scholarly journals Tropical carbon sink accelerated by symbiotic dinitrogen fixation

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jennifer H. Levy-Varon ◽  
Sarah A. Batterman ◽  
David Medvigy ◽  
Xiangtao Xu ◽  
Jefferson S. Hall ◽  
...  

AbstractA major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change.

2015 ◽  
Vol 62 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Mehraj Ahamd Sheikh ◽  
Munesh Kumar ◽  
Nagendra Prasad Todaria

Abstract We compared the C storage of two nitrogen-fixing trees in mixed and monospecific plantations to investigate the C sequestration potential after 10 years of their establishment. The study was carried out in three types of plantation, Dalbergia sissoo Roxb. ex DC. pure (P1DS), Leucaena leucocephala (Lam.) de Wit pure (P2LL) and mixed plantation of D. sissoo and L. leucocephala (P3DS.LL). The results of the study indicated that, P3DS.LL sequestered 34.30 ± 0.24 t yr-1 ha-1 CO2 compared to 27.35 ± 0.19 t yr-1 ha-1 in P1DS and 19.81 ± 0.44 t yr-1 ha-1 in P2LL. Total carbon storage was also maximum in P3DS.LL (93.47 ± 0.67 t ha-1) followed by P1DS (74.54 ± 0.53 t ha-1) and P2LL (53.98 ± 1.21 t ha-1). This indicates that L. leucocephala has synergetic effect with D. sissoo to enhance the carbon sequestration potential when interplanted together. The study revealed that mixed plantation of N-fixer trees have potential to sequester more carbon than same species in monoculture. The study concluded that in reforestation or afforestation program the synergic effect of N-fixer trees can be helpful projects to offset more C emissions.


2013 ◽  
Vol 807-809 ◽  
pp. 810-813
Author(s):  
Fei Li ◽  
Hua Yong Zhang ◽  
Zhong Yu Wang ◽  
Zong Han Li

In order to estimate the carbon sequestration of Pinus tabulaeformis forests in Shanxi Province, field measurement data from 36 Pinus tabulaeformis forest stands and the 8th National Forest Resource Inventory data were collected. Using the field measurement data, the relationship between stand volume and stand biomass was established. By applying the relationship and a specific carbon concentration coefficient to the forest inventory data, the carbon sequestrations of nature and planted Pinus tabulaeformis forests in each age class were estimated respectively. The results show that the total carbon sequestration of Pinus tabulaeformis forests in Shanxi Province is 13.43 Tg (1 Tg=1012 g). The nature forests are acting as the major carbon sink, with the carbon sequestration accounting for 64% of the total amount. Among the forests in different age classes, the mid-aged and premature forests have sequestered around 10.92 Tg C, which accounts for 81% of the total carbon sequestration.


2013 ◽  
Vol 10 (2) ◽  
pp. 929-944 ◽  
Author(s):  
D. J. Charman ◽  
D. W. Beilman ◽  
M. Blaauw ◽  
R. K. Booth ◽  
S. Brewer ◽  
...  

Abstract. Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.


2000 ◽  
Vol 37 (5) ◽  
pp. 683-693 ◽  
Author(s):  
Dale H Vitt ◽  
Linda A Halsey ◽  
Ilka E Bauer ◽  
Celina Campbell

Peatlands of continental western Canada (Alberta, Saskatchewan, and Manitoba) cover 365 157 km2 and store 48.0 Pg of carbon representing 2.1% of the world's terrestrial carbon within 0.25% of the global landbase. Only a small amount, 0.10 Pg (0.2%) of this carbon, is currently stored in the above-ground biomass. Carbon storage in peatlands has changed significantly since deglaciation. Peatlands began to accumulate carbon around 9000 years ago in this region, after an initial deglacial lag. Carbon accumulation was climatically limited throughout much of continental western Canada by early Holocene maximum insolation. After 6000 BP, carbon accumulation increased significantly, with about half of current stores being reached by 4000 BP. Around 3000 BP carbon accumulation in continental western Canada began to slow as permafrost developed throughout the subarctic and boreal region and the current southern limit of peatlands was reached. Peatlands in continental western Canada continue to increase their total carbon storage today by 19.4 g m-2 year-1, indicating that regionally this ecosystem remains a large carbon sink.


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Kangkuso Analuddin ◽  
Kadidae La Ode ◽  
Muhammad Yasir Haya La Ode ◽  
Septiana Andi ◽  
Sahidin Idin ◽  
...  

Abstract. Analuddin K, Kadidae LO, Haya LOMY, Septiana A, Sahidin I, Syahrir L, Rahim S, Fajar LOA, Nadaoka K. 2020. Aboveground biomass, productivity and carbon sequestration in Rhizophora stylosa mangrove forest of Southeast Sulawesi, Indonesia. Biodiversitas 21: 1316-1325. This study was aimed at analyzing the trends of aboveground biomass (AGB), productivity and carbon sequestration of Rhizophora stylosa Griff. forest in Rawa Aopa Watumohai National Park (RAWNP), Southeast Sulawesi, Indonesia. The DBH was the best predictor for partial and whole AGB of R. stylosa trees. The mean AGB was 562.76 ton ha-1. The yearly biomass increment of living trees, biomass increment of whole stands, standing dead biomass, and litterfall in R. stylosa forest were estimated as 52.87, 50.09, 2.78 and 12.00 ton ha-1, respectively, while its net primary production was about 64.88 ton ha-1 yr-1 indicating higher mangrove productivity. The total carbon stock in R. stylosa forest was 264.50 ton ha-1, while the annual net carbon budget, carbon gain and carbon input in R. stylosa forest was 23.54, 24.85 and 5.64 ton ha-1. However, the total CO2 stored in R. stylosa forest was 969.83 ton ha-1, while the annual of net CO2 uptake, CO2 gained and CO2 input was 86.33, 91.12 and 20.86 ton ha-1. The higher carbon sequestration and CO2 uptake in R. stylosa forest indicate its significant role in the global carbon accumulation and reducing atmospheric CO2.


2020 ◽  
Author(s):  
Ziying He ◽  
Huaye Sun ◽  
Yisheng Peng ◽  
Zhan Hu ◽  
Yingjie Cao ◽  
...  

Abstract Background:The fast-growing introduced mangrove Sonneratia apetala is widely used for mangrove afforestation and reforestation in China. Some studies suggested that this exotic species outperforms native species in terms of carbon sequestration potential. This study tested the hypothesis that multi-species mangrove plantations might have higher carbon sequestration potential than S. apetala monocultures.Results: Our field measurements at Hanjiang River Estuary (Guangdong province, China) showed that the carbon stock (46.0±3.0 Mg/ha) in S. apetala plantations where the native Kandelia obovata formed an understory shrub layer was slightly higher than that in S. apetala monocultures (36.6±1.3 Mg/ha). Moreover, the carbon stock in monospecific K. obovata stands (106.6±1.4 Mg/ha ) was much larger than that of S. apetala monocultures.Conclusions: Our results show that K. obovata monocultures may have a higher carbon accumulation rate than S. apetala monocultures. Planting K. obovata seedlings in existing S. apetala plantations may enhance the carbon sink associated with these plantations.


2009 ◽  
Vol 39 (8) ◽  
pp. 1507-1517 ◽  
Author(s):  
Helen Karu ◽  
Robert Szava-Kovats ◽  
Margus Pensa ◽  
Olevi Kull

Ecosystems that develop on mine spoil can serve as significant sinks for CO2. The aim of this study was to estimate the rate of carbon accumulation and its distribution along forest ecosystem partitions in young Scots pine ( Pinus sylvestris L.) plantations in the Narva oil shale opencast, Estonia. The tree layer was measured in 2004 in 13 stands afforested with 2-year-old seedlings during 1968 to 1994. Three stands (afforested in 1990, 1983, and 1968) were selected for detailed analysis of the carbon sequestration. Soil profiles were sampled in these stands in 2005. Radiocarbon analysis combined with a simple model of litter production was used to differentiate between plant-derived recent carbon and carbon stemming from fragments of oil shale. Total carbon accumulated since afforestation in vegetation, forest floor, and A horizon was 7.8 t·ha–1 in the stand established in 1990, 34.5 t·ha–1 in that established in 1983, and 133.4 t·ha–1 in that established in 1968. Most of the sequestered carbon was allocated to tree stems; their portion increasing with age from 28% to 51%. The portion of recent soil organic carbon increased from 5% to 23%, which shows that soils contribute significantly to carbon accumulation during early forest succession on degraded land.


2021 ◽  
Author(s):  
Ezekiel Ajayi

Tree species carbon assessment and quantification remain the only opportunity to determine the position of forest in climate change amelioration potentials. Forest biomass constitutes the largest terrestrial carbon sink and accounts for approximately 90% of all living terrestrial biomass. The aim of this study is to assess tree species carbon sequestration potentials of selected urban tree species. The study was carried out in Adekunle Ajasin University Campus, Akungba Akoko, Ondo State, Nigeria. All trees species ≥10 cm Diameter at Breast Height (Dbh) within the area were identified and their Dbh measured as well as other variables for volume computation such as height, diameters at the base, middle and top. Also, for density assessment; stem core samples were collected. Again, the coordinate of individual tree was recorded using a Global Positioning System (GPS) receiver. A total of 124 individual trees were encountered with varying growth variables as well as carbon values. The study area contains some indigenous and exotic tree species such as Acacia auriculiformis, Terminalia mantily, Gmelina arborea and Tectona grandis etc. but Acacia auriculiformis had the highest frequency. The tree species with highest carbon sequestration was Gmelina arborea as recorded for this study. The total carbon and carbon dioxide sequestered in the study area were reported as 47.94 kg and 176.03 kg respectively.


Sign in / Sign up

Export Citation Format

Share Document