scholarly journals Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lin Jiang ◽  
Haoran Su ◽  
Xiaoyin Wu ◽  
Hong Shen ◽  
Min-Hyun Kim ◽  
...  

Abstract Leptin stimulates the sympathetic nervous system (SNS), energy expenditure, and weight loss; however, the underlying molecular mechanism remains elusive. Here, we uncover Sh2b1 in leptin receptor (LepR) neurons as a critical component of a SNS/brown adipose tissue (BAT)/thermogenesis axis. LepR neuron-specific deletion of Sh2b1 abrogates leptin-stimulated sympathetic nerve activation and impairs BAT thermogenic programs, leading to reduced core body temperature and cold intolerance. The adipose SNS degenerates progressively in mutant mice after 8 weeks of age. Adult-onset ablation of Sh2b1 in the mediobasal hypothalamus also impairs the SNS/BAT/thermogenesis axis; conversely, hypothalamic overexpression of human SH2B1 has the opposite effects. Mice with either LepR neuron-specific or adult-onset, hypothalamus-specific ablation of Sh2b1 develop obesity, insulin resistance, and liver steatosis. In contrast, hypothalamic overexpression of SH2B1 protects against high fat diet-induced obesity and metabolic syndromes. Our results unravel an unrecognized LepR neuron Sh2b1/SNS/BAT/thermogenesis axis that combats obesity and metabolic disease.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lin Jiang ◽  
Haoran Su ◽  
Xiaoyin Wu ◽  
Hong Shen ◽  
Min-Hyun Kim ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


1999 ◽  
Vol 276 (6) ◽  
pp. R1569-R1578 ◽  
Author(s):  
Maryam Bamshad ◽  
C. Kay Song ◽  
Timothy J. Bartness

Brown adipose tissue (BAT) plays a critical role in cold- and diet-induced thermogenesis. Although BAT is densely innervated by the sympathetic nervous system (SNS), little is known about the central nervous system (CNS) origins of this innervation. The purpose of the present experiment was to determine the neuroanatomic chain of functionally connected neurons from the CNS to BAT. A transneuronal viral tract tracer, Bartha’s K strain of the pseudorabies virus (PRV), was injected into the interscapular BAT of Siberian hamsters. The animals were killed 4 and 6 days postinjection, and the infected neurons were visualized by immunocytochemistry. PRV-infected neurons were found in the spinal cord, brain stem, midbrain, and forebrain. The intensity of labeled neurons in the forebrain varied from heavy infections in the medial preoptic area and paraventricular hypothalamic nucleus to few infections in the ventromedial hypothalamic nucleus, with moderate infections in the suprachiasmatic and lateral hypothalamic nuclei. These results define the SNS outflow from the brain to BAT for the first time in any species.


1994 ◽  
Vol 266 (2) ◽  
pp. R400-R404 ◽  
Author(s):  
A. Terao ◽  
M. Oikawa ◽  
M. Saito

To examine the effects of brain cytokines on the sympathetic nervous system, norepinephrine (NE) turnover in peripheral organs (spleen, lung, diaphragm, pancreas, heart, liver, kidney, and interscapular brown adipose tissue) was assessed after intraperitoneal or intracerbroventricular administrations of human recombinant interleukin (IL)-1 beta and IL-6 in rats. An intraperitoneal injection of IL-1 (1 microgram/rat) accelerated NE turnover in the spleen, lung, diaphragm, and pancreas without appreciable effects in other organs examined. When IL-1 was injected intracerebroventricularly at much lower doses (1-100 ng/rat), a dose-dependent increase in NE turnover was observed in the spleen, lung, diaphragm, and pancreas. IL-6 did not affect NE turnover in every organ examined, even when it was given at much higher doses, 100 micrograms/rat and 100 ng/rat for intraperitoneal and intracerebroventricular injections, respectively. In contrast to tissue NE turnover, plasma corticosterone level was increased after the administration of IL-6 as well as IL-1, regardless of the site of administration. These results suggest that central IL-1, but not IL-6, increases sympathetic nerve activity in some specific organs, whereas both cytokines are effective for adrenocortical activation. A possible role of the sympathetic nervous system in physiological and immune responses to central IL-1 was discussed.


1983 ◽  
Vol 245 (2) ◽  
pp. E148-E154 ◽  
Author(s):  
J. B. Young ◽  
L. Landsberg

The genetically obese (ob/ob) mouse exhibits defective thermoregulatory responses to cold exposure. Pathophysiological explanations for this phenomenon have focused on abnormalities in intracellular metabolism or insensitivity of peripheral tissues to the thermogenic effects of catecholamines. Because the sympathetic nervous system (SNS) is subject to feedback regulation, a peripheral impairment in thermogenesis should be associated with a compensatory increase in SNS activity. To examine SNS activity in the ob/ob mouse, norepinephrine (NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of ob/ob and lean mice. The results from studies utilizing radiolabeled NE or inhibition of NE biosynthesis with alpha-methyl-p-tyrosine to measure NE turnover demonstrated reductions in SNS activity of 33-56% in heart and of 45-73% in IBAT in ob/ob mice at ambient temperature (22 degrees C) compared with measurements in lean controls. During cold exposure (4 degrees C) NE turnover increased in heart and IBAT to a similar extent in both ob/ob and lean mice, but NE turnover rates in heart, and probably in IBAT as well, remained lower in the obese mice than in the lean despite the gradual development of hypothermia in the ob/ob mice during this period. Administration of naltrexone, a long-acting opiate antagonist, failed to reverse the suppression of SNS activity observed in the ob/ob mice. These data indicate that diminished SNS activity in ob/ob mice may be an additional factor contributing to the defective thermogenesis characteristic of these animals.


1993 ◽  
Vol 265 (2) ◽  
pp. E252-E258 ◽  
Author(s):  
W. J. Yeh ◽  
P. Leahy ◽  
H. C. Freake

Thyroid hormone regulates lipogenesis differently in rat liver and brown adipose tissue (BAT). In the hypothyroid state, lipogenesis is suppressed in liver but enhanced in BAT. Here we investigated the mechanisms underlying increased lipogenesis in hypothyroid BAT. Housing the animals at 28 degrees C decreased lipogenesis in hypothyroid BAT to euthyroid levels. Denervation resulted in a 90% reduction in lipogenesis in hypothyroid BAT such that levels were lower than in euthyroid tissue. Thyroid hormone treatment of hypothyroid rats stimulated fatty acid synthesis in denervated BAT, as in liver, but decreased it in intact BAT. Steady-state levels of mRNA encoding acetyl-CoA carboxylase, fatty-acid synthase, and spor 14 were measured in similar animals by Northern analysis. The expression of these mRNAs mirrored the lipogenic data, showing that both thyroid hormone and the sympathetic nervous system work at a pretranslational level in this tissue. These data suggest that the increased BAT lipogenesis found with hypothyroidism is mediated by the sympathetic nervous system to counter the reduction in metabolic rate in these animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doyeon Kim ◽  
Yuna Lee ◽  
Hyeung-Rak Kim ◽  
Yeo Jin Park ◽  
Hongik Hwang ◽  
...  

AbstractSargassum serratifolium (C. Agardh) C.Agardh, a marine brown alga, has been consumed as a food and traditional medicine in Asia. A previous study showed that the meroterpenoid-rich fraction of an ethanolic extract of S. serratifolium (MES) induced adipose tissue browning and suppressed diet-induced obesity and metabolic syndrome when orally supplemented. Sargahydroquinoic acid (SHQA) is a major component of MES. However, it is unclear whether SHQA regulates energy homeostasis through the central nervous system. To examine this, SHQA was administrated through the third ventricle in the hypothalamus in high-fat diet-fed C57BL/6 mice and investigated its effects on energy homeostasis. Chronic administration of SHQA into the brain reduced body weight without a change in food intake and improved metabolic syndrome-related phenotypes. Cold experiments and biochemical analyses indicated that SHQA elevated thermogenic signaling pathways, as evidenced by an increase in body temperature and UCP1 signaling in white and brown adipose tissues. Peripheral denervation experiments using 6-OHDA indicated that the SHQA-induced anti-obesity effect is mediated by the activation of the sympathetic nervous system, possibly by regulating genes associated with sympathetic outflow and GABA signaling pathways. In conclusion, hypothalamic injection of SHQA elevates peripheral thermogenic signaling and ameliorates diet-induced obesity.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Kazuko Masuo

Hypertension, diabetes mellitus (especially type 2 diabetes mellitus), metabolic syndrome and obesity are rapidly growing public health problems. Sympathetic nerve activation is observed in obesity, hypertension and diabetes mellitus, which have strong genetic as well as environmental determinants. Reduced energy expenditure and resting metabolic rate are predictive of weight gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic effects of catecholamines in obesity have been mainly mediated via the 2- and 3-adrenergic receptors in humans. Further, 2-adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. Genetic polymorphistns of the -adrenoceptor gene have been shown to alter the function of several adrenoceptor subtypes and thus to modify the response to catecholamine. 2-adrenoceptor polymorphisms (Arg16Gly, Gln27Glu, and Thr164Ile) have been studied in relation to hypertension. Genetic variations in the 3-adrenoceptor (i.e. Try64Arg variant) are also associated with both obesity and hypertension. However, the precise relationships of the polymorphisms of 2- and 3-adrenoceptor genes with sympathetic nervous system activity, hypertension, and metabolic syndrome have not been fully clarified. This paper will discuss the current topics involving the influence of the sympathetic nervous system and 2- and 3- adrenoceptor polymorphisms in hypertension and metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document