scholarly journals Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Geng An ◽  
Feixiang Guo ◽  
Xuemin Liu ◽  
Zhifang Wang ◽  
Ye Zhu ◽  
...  
2021 ◽  
pp. 2000398
Author(s):  
Fei Liu ◽  
Wenyu Li ◽  
Hongting Liu ◽  
Teng Yuan ◽  
Yu Yang ◽  
...  

Author(s):  
Ana A. Aldana ◽  
Marina Uhart ◽  
Gustavo A. Abraham ◽  
Diego M. Bustos ◽  
Aldo R. Boccaccini

Abstract3D printing has emerged as vanguard technique of biofabrication to assemble cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissues. In this work, gelatin methacrylate (GelMA)/alginate hydrogel scaffolds were obtained by 3D printing and 14-3-3ε protein was encapsulated in the hydrogel to induce osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASC). GelMA/alginate-based grid-like structures were printed and remained stable upon photo-crosslinking. The viscosity of alginate allowed to control the pore size and strand width. A higher viscosity of hydrogel ink enhanced the printing accuracy. Protein-loaded GelMA/alginate-based hydrogel showed a clear induction of the osteogenic differentiation of hASC cells. The results are relevant for future developments of GelMA/alginate for bone tissue engineering given the positive effect of 14-3-3ε protein on both cell adhesion and proliferation.


2017 ◽  
Vol 3 (4) ◽  
pp. 045005 ◽  
Author(s):  
Natasha Maurmann ◽  
Daniela P Pereira ◽  
Daniela Burguez ◽  
Frederico D A de S Pereira ◽  
Paulo Inforçatti Neto ◽  
...  

2015 ◽  
Vol 16 (4) ◽  
pp. 045001 ◽  
Author(s):  
Jian-Feng Pan ◽  
Shuo Li ◽  
Chang-An Guo ◽  
Du-Liang Xu ◽  
Feng Zhang ◽  
...  

2021 ◽  
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of smart material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. Here, we reported on a novel thermosensitive hydrogel which can be 3D printed using extrusion based printing. Gel strength was found around 3kPa storage modulus with pronounced shear thinning and rapid recovery after stress. Addition of clay nanoparticles (Laponite XLG) improved the rheological profile further. Human adipose derived stem cells were added to the hydrogel matrix, which remained fully viable after printing. Therefore, the presented materials adds to the available material toolbox for 3D bioprinting. <br>


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3057 ◽  
Author(s):  
Shuaishuai Cao ◽  
Jonghyeuk Han ◽  
Neha Sharma ◽  
Bilal Msallem ◽  
Wonwoo Jeong ◽  
...  

3D printed biomaterials have been extensively investigated and developed in the field of bone regeneration related to clinical issues. However, specific applications of 3D printed biomaterials in different dental areas have seldom been reported. In this study, we aimed to and successfully fabricated 3D poly (lactic-co-glycolic acid)/β-tricalcium phosphate (3D-PLGA/TCP) and 3D β-tricalcium phosphate (3D-TCP) scaffolds using two relatively distinct 3D printing (3DP) technologies. Conjunctively, we compared and investigated mechanical and biological responses on human dental pulp stem cells (hDPSCs). Physicochemical properties of the scaffolds, including pore structure, chemical elements, and compression modulus, were characterized. hDPSCs were cultured on scaffolds for subsequent investigations of biocompatibility and osteoconductivity. Our findings indicate that 3D printed PLGA/TCP and β-tricalcium phosphate (β-TCP) scaffolds possessed a highly interconnected and porous structure. 3D-TCP scaffolds exhibited better compressive strength than 3D-PLGA/TCP scaffolds, while the 3D-PLGA/TCP scaffolds revealed a flexible mechanical performance. The introduction of 3D structure and β-TCP components increased the adhesion and proliferation of hDPSCs and promoted osteogenic differentiation. In conclusion, 3D-PLGA/TCP and 3D-TCP scaffolds, with the incorporation of hDPSCs as a personalized restoration approach, has a prospective potential to repair minor and critical bone defects in oral and maxillofacial surgery, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2136
Author(s):  
Eric Luis ◽  
Houwen Matthew Pan ◽  
Anil Kumar Bastola ◽  
Ram Bajpai ◽  
Swee Leong Sing ◽  
...  

Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.


2017 ◽  
Vol 56 (16) ◽  
pp. 4623-4628 ◽  
Author(s):  
Bernhard Baumann ◽  
Tomasz Jungst ◽  
Simone Stichler ◽  
Susanne Feineis ◽  
Oliver Wiltschka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document