scholarly journals Engineering multiple species-like genetic incompatibilities in insects

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej Maselko ◽  
Nathan Feltman ◽  
Ambuj Upadhyay ◽  
Amanda Hayward ◽  
Siba Das ◽  
...  

Abstract Speciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives. Here, we demonstrate a general approach to create engineered genetic incompatibilities (EGIs) in the model insect Drosophila melanogaster. EGI couples a dominant lethal transgene with a recessive resistance allele. Strains homozygous for both elements are fertile and fecund when they mate with similarly engineered strains, but incompatible with wild-type strains that lack resistant alleles. EGI genotypes can also be tuned to cause hybrid lethality at different developmental life-stages. Further, we demonstrate that multiple orthogonal EGI strains of D. melanogaster can be engineered to be mutually incompatible with wild-type and with each other. EGI is a simple and robust approach in multiple sexually reproducing organisms.

Author(s):  
Maciej Maselko ◽  
Nathan Feltman ◽  
Ambuj Upadhyay ◽  
Amanda Hayward ◽  
Siba Das ◽  
...  

AbstractSpeciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives. Natural speciation can be driven by pre-zygotic barriers that prevent fertilization or by post-zygotic genetic incompatibilities that render the hybrid progeny inviable or sterile. Here we demonstrate a general approach to create engineered genetic incompatibilities (EGIs) in the model insect Drosophila melanogaster. Our system couples a dominant lethal transgene with a recessive resistance allele. EGI strains that are homozygous for both elements are fertile and fecund when they mate with similarly engineered strains, but incompatible with wild-type strains that lack resistant alleles. We show that EGI genotypes can be tuned to cause hybrid lethality at different developmental life-stages. Further, we demonstrate that multiple orthogonal EGI strains of D. melanogaster can be engineered to be mutually incompatible with wild-type and with each other. Our approach to create EGI organisms is simple, robust, and functional in multiple sexually reproducing organisms.


2015 ◽  
Author(s):  
James E DiCarlo ◽  
Alejandro Chavez ◽  
Sven L Dietz ◽  
Kevin M Esvelt ◽  
George M Church

Inheritance-biasing “gene drives” may be capable of spreading genomic alterations made in laboratory organisms through wild populations. We previously considered the potential for RNA-guided gene drives based on the versatile CRISPR/Cas9 genome editing system to serve as a general method of altering populations. Here we report molecularly contained gene drive constructs in the yeast Saccharomyces cerevisiae that are typically copied at rates above 99% when mated to wild yeast. We successfully targeted both non-essential and essential genes, showed that the inheritance of an unrelated “cargo” gene could be biased by an adjacent drive, and constructed a drive capable of overwriting and reversing changes made by a previous drive. Our results demonstrate that RNA-guided gene drives are capable of efficiently biasing inheritance when mated to wild-type organisms over successive generations.


1975 ◽  
Vol 25 (2) ◽  
pp. 95-107 ◽  
Author(s):  
S. Senathirajah ◽  
D. Lewis

SUMMARYWild-type strains of Coprinus lagopus are sensitive to para-fluoro-phenylalanine and ethionine. Resistant mutants to these two analogues are known but all these mutants are recessive in a heterozygous dikaryon except for F7 (pfpr-3) which is semi-dominant. Resistance to two other analogues, however – canavanine sulphate and azetidine-2-carboxylic acid – were found to be wild-type features. One strain of C. lagopus sensitive to canavanine was identified. Selection for canavanine resistance in monokaryons always yielded only dominant resistance, while selection for para-fluorophenylalanine resistance in monokaryons gave only recessive resistance. Canavanine-resistant mutants were due to a single gene mutation which, like the wild-type resistance, were dominant in heterozygous dikaryons. The wild-type resistance was also dominant in a diploid but the mutant resistance was recessive. Selection for resistance to para-fluorophenylalanine in auxotrophically balanced dikaryons resulted in the identification of two new loci (pfpr-10 and pfpr-ll), and two specific dominance modifiers (mod+-10 and mod+-ll). In the absence of the specific modifier, pfpr-10 and pfpr-ll were recessive while, in the presence of even one dose of the specific modifier, resistance was dominant in the dikaryon. The pfpr-10 and pfpr-ll even in the presence of two doses of modifier were fully recessive in the diploid. The action of the modifier genes and the reversal of dominance in dikaryon and diploid is discussed in terms of negative complementation in an oligomeric product of the pfpr gene and localized translation of the relevant mRNA in the cell with the modifier acting as a reinforcer of localization.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 761-776 ◽  
Author(s):  
Lori A Rinckel ◽  
David J Garfinkel

Abstract In Saccharomyces cerevisiae, the target site specificity of the retrotransposon Ty1 appears to involve the Ty integration complex recognizing chromatin structures. To determine whether changes in chromatin structure affect Ty1 and Ty2 target site preference, we analyzed Ty transposition at the CAN1 locus in mutants containing altered levels of histone proteins. A Δhta1-htb1 mutant with decreased levels of H2A and H2B histone proteins showed a pattern of Ty1 and Ty2 insertions at CAN1 that was significantly different from that of both the wild-type and a Δhta2-htb2 mutant, which does not have altered histone protein levels. Altered levels of H2A and H2B proteins disrupted a dramatic orientation bias in the CAN1 promoter region. In the wild-type strains, few Ty1 and Ty2 insertions in the promoter region were oriented opposite to the direction of CAN1 transcription. In the Δhta1-htb1 background, however, numerous Ty1 and Ty2 insertions were in the opposite orientation clustered within the TATA region. This altered insertion pattern does not appear to be due to a bias caused by selecting canavanine resistant isolates in the different HTA1-HTB1 backgrounds. Our results suggest that reduced levels of histone proteins alter Ty target site preference and disrupt an asymmetric Ty insertion pattern.


1990 ◽  
Vol 36 (7) ◽  
pp. 484-489 ◽  
Author(s):  
G. C. Papavizas ◽  
D. P. Roberts ◽  
K. K. Kim

Aqueous suspensions of conidia of Gliocladium virens strains Gl-3 and Gl-21 were exposed to both ultraviolet radiation and ethyl methanesulfonate. Two mutants of Gl-3 and three of Gl-21 were selected for tolerance to benomyl at 10 μg∙mL−1, as indicated by growth and conidial germination on benomyl-amended potato dextrose agar. The mutants differed considerably from their respective wild-type strains in appearance, growth habit, sporulation, carbon-source utilization, and enzyme activity profiles. Of 10 carbon sources tested, cellobiose, xylose, and xylan were the best for growth, galactose and glucose were intermediate, and arabinose, ribose, and rhamnose were poor sources of carbon. The wild-type strains and the mutants did not utilize cellulose as the sole carbon source for growth. Two benomyl-tolerant mutants of Gl-3 produced less cellulase (β-1,4-glucosidase, carboxymethylcellulase, filter-paper cellulase) than Gl-3. In contrast, mutants of Gl-21 produced more cellulase than the wild-type strain. Only Gl-3 provided control of blight on snapbean caused by Sclerotium rolfsii. Wild-type strain Gl-21 and all mutants from both strains were ineffective biocontrol agents. Key words: Gliocladium, benomyl tolerance, Sclerotium, rhizosphere competence.


2012 ◽  
Vol 56 (8) ◽  
pp. 4146-4153 ◽  
Author(s):  
Zaid Al-Nakeeb ◽  
Ajay Sudan ◽  
Adam R. Jeans ◽  
Lea Gregson ◽  
Joanne Goodwin ◽  
...  

ABSTRACTItraconazole is used for the prevention and treatment of infections caused byAspergillus fumigatus. An understanding of the pharmacodynamics of itraconazole against wild-type and triazole-resistant strains provides a basis for innovative therapeutic strategies for treatment of infections. Anin vitromodel of the human alveolus was used to define the pharmacodynamics of itraconazole. Galactomannan was used as a biomarker. The effect of systemic and airway administration of itraconazole was assessed, as was a combination of itraconazole administered to the airway and systemically administered 5FC. Systemically administered itraconazole against the wild type induced a concentration-dependent decline in galactomannan in the alveolar and endothelial compartments. No exposure-response relationships were apparent for the L98H, M220T, or G138C mutant. The administration of itraconazole to the airway resulted in comparable exposure-response relationships to those observed with systemic therapy. This was achieved without detectable concentrations of drug within the endothelial compartment. The airway administration of itraconazole resulted in a definite but submaximal effect in the endothelial compartment against the L98H mutant. The administration of 5FC resulted in a concentration-dependent decline in galactomannan in both the alveolar and endothelial compartments. The combination of airway administration of itraconazole and systemically administered 5FC was additive. Systemic administration of itraconazole is ineffective against Cyp51 mutants. The airway administration of itraconazole is effective for the treatment of wild-type strains and appears to have some activity against the L98H mutants. Combination with other agents, such as 5FC, may enable the attainment of near-maximal antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document