scholarly journals Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Qin ◽  
Hui Chen ◽  
Jia Yao ◽  
Yue Zhou ◽  
Yongjoon Cho ◽  
...  

AbstractIn organic electronics, an aromatic fused ring is a basic unit that provides π-electrons to construct semiconductors and governs the device performance. The main challenge in developing new π-skeletons for tuning the material properties is the limitation of the available chemical approach. Herein, we successfully synthesize two pentacyclic siloxy-bridged π-conjugated isomers to investigate the synergistic effects of Si and O atoms on the geometric and electronic influence of π-units in organic electronics. Notably, the synthesis routes for both isomers possess several advantages over the previous approaches for delivering conventional aromatic fused-rings, such as environmentally benign tin-free synthesis and few synthetic steps. To explore their potential application as photovoltaic materials, two isomeric acceptor–donor–acceptor type acceptors based on these two isomers were developed, showing a decent device efficiency of 10%, which indicates the great potential of this SiO-bridged ladder-type unit for the development of new high-performance semiconductor materials.

2020 ◽  
Author(s):  
Ying Qin ◽  
Hui Chen ◽  
Jia Yao ◽  
Yue Zhou ◽  
Yulin Zhu ◽  
...  

Abstract In organic electronics, aromatic fused-ring is the basic unit that provides π-electrons to construct solution-processable, lightweight, flexible semiconductors and governs the device performance in a wide range of new technologies. The main challenge on developing new π-skeletons for tuning the material properties is the limitation of available chemical approach. Herein, we addressed the problems on chemical synthesis and for the first time successfully synthesized two pentacyclic siloxy-bridged π-conjugated isomers (SiO5T-5 & SiO5T-10), for investigating the synergistic effects of Si and O atoms on the geometric and electronic influence of the π-units in organic electronics. Notably, the synthesis routes for both of SiO5T-5 and SiO5T-10 possess several advantages over the previous approaches for delivering conventional aromatic fused-ring such as environmentally benign tin-free synthesis, and less synthetic steps. To explore its potential application as photovoltaic materials, two isomeric A-D-A acceptors based on these two SiO5Ts isomers were developed, showing a decent device efficiency of 10%, which is higher than those of carbon and carbon-oxygen analogue-based PSCs. Our study indicates that the siloxy-bridged π-conjugated system is a potential donor core for photovoltaic materials. The silicon and oxygen synergistic effects presented herein would bring new vigor and vitality for further improving the performance of organic solar cells.


2016 ◽  
Vol 4 (26) ◽  
pp. 6200-6214 ◽  
Author(s):  
Yang Wang ◽  
Tsuyoshi Michinobu

Electron-deficient building blocks based on benzothiadiazole and its π-extended, heteroannulated derivatives for constructing high-performance semiconducting polymers are described.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2008 ◽  
Author(s):  
Jun Takeya ◽  
Takafumi Uemura ◽  
M. Uno ◽  
Masakazu Yamagishi ◽  
Yukihiro Tominari

Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 437
Author(s):  
Marta Tikhomirov ◽  
Błażej Poźniak ◽  
Tomasz Śniegocki

The precise and reliable determination of buprenorphine concentration is fundamental in certain medical or research applications, particularly in pharmacokinetic studies of this opioid. The main challenge is, however, the development of an analytical method that is sensitive enough, as the detected in vivo concentrations often fall in very low ranges. Thus, in this study we aimed at developing a sensitive, repeatable, cost-efficient, and easy HPLC analytical protocol for buprenorphine in rabbit plasma. In order to obtain this, the HPLC-MS2 system was used to elaborate and validate the method for samples purified with liquid-liquid extraction. Fragment ions 468.6→396.2 and 468.6→414.2 were monitored, and the method resulted in a high repeatability and reproducibility and a limit of quantification of 0.25 µg/L with a recovery of 98.7–109.0%. The method was linear in a range of 0.25–2000 µg/L. The suitability of the analytical procedure was tested in rabbits in a pilot pharmacokinetic study, and it was revealed that the method was suitable for comprehensively describing the pharmacokinetic profile after buprenorphine intravenous administration at a dose of 300 µg/kg. Thus, the method suitability for pharmacokinetic application was confirmed by both the good validation results of the method and successful in vivo tests in rabbits.


Sign in / Sign up

Export Citation Format

Share Document