Progress in Organic Crystal Transistors for High-Performance Organic Electronics

2008 ◽  
Author(s):  
Jun Takeya ◽  
Takafumi Uemura ◽  
M. Uno ◽  
Masakazu Yamagishi ◽  
Yukihiro Tominari
Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


2021 ◽  
Vol 17 ◽  
pp. 100352
Author(s):  
S.-J. Wang ◽  
M. Sawatzki ◽  
H. Kleemann ◽  
I. Lashkov ◽  
D. Wolf ◽  
...  

2020 ◽  
Vol 117 (34) ◽  
pp. 20397-20403
Author(s):  
Dong Meng ◽  
Jonathan Lee Yang ◽  
Chengyi Xiao ◽  
Rui Wang ◽  
Xiaofei Xing ◽  
...  

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Qin ◽  
Hui Chen ◽  
Jia Yao ◽  
Yue Zhou ◽  
Yongjoon Cho ◽  
...  

AbstractIn organic electronics, an aromatic fused ring is a basic unit that provides π-electrons to construct semiconductors and governs the device performance. The main challenge in developing new π-skeletons for tuning the material properties is the limitation of the available chemical approach. Herein, we successfully synthesize two pentacyclic siloxy-bridged π-conjugated isomers to investigate the synergistic effects of Si and O atoms on the geometric and electronic influence of π-units in organic electronics. Notably, the synthesis routes for both isomers possess several advantages over the previous approaches for delivering conventional aromatic fused-rings, such as environmentally benign tin-free synthesis and few synthetic steps. To explore their potential application as photovoltaic materials, two isomeric acceptor–donor–acceptor type acceptors based on these two isomers were developed, showing a decent device efficiency of 10%, which indicates the great potential of this SiO-bridged ladder-type unit for the development of new high-performance semiconductor materials.


Nanoscale ◽  
2017 ◽  
Vol 9 (29) ◽  
pp. 10178-10185 ◽  
Author(s):  
Subir Parui ◽  
Mário Ribeiro ◽  
Ainhoa Atxabal ◽  
Roger Llopis ◽  
Fèlix Casanova ◽  
...  

High-performance lateral and vertical organic field-effect transistors are demonstrated based on graphene electrodes and solution-processed N2200 polymers for advanced organic-electronics.


2005 ◽  
Vol 871 ◽  
Author(s):  
Yan Shao ◽  
Yang Yang

AbstractRecent two decades have seen the rapid development of organic electronics and much attention has been paid to carrier transport behavior. However, other characteristics, such as material compatibility, may be overlooked. We propose a new doping method taking advantage of fused organic solid solution, which is prepared by high-pressure and high temperature processing. In this method, the stable material systems can be selected and high performance organic light-emitting diodes with different colors have been demonstrated.


2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000006-000011
Author(s):  
N Palavesam ◽  
W Hell ◽  
A Drost ◽  
C Landesberger ◽  
C Kutter ◽  
...  

Abstract The emerging Internet-of-Everything (IoE) framework aims to revolutionise human-machine interaction where billions of sensors and actuators placed on almost every physical object will be tasked to communicate with each other. A substantial fraction of these devices will be placed on locations that would undergo repeated bending deformation (such as sensors for prosthetics, human body and robots) or on curved surfaces (like interior as well as exterior of automobiles, buildings and industrial equipment). Therefore, flexible sensors and actuators delivering high performance at low power requirements and manufactured at low cost will be the key for successful implementation of IoE. Though massive developments achieved in printed and organic electronics have enabled them to fulfil the required flexibility and low cost demands of IoE applications, printed and organic electronics often fall short of the high performance and low power requirements demonstrated by silicon ICs. Flexible chip foil packages fabricated by integrating ultra-thin bare silicon ICs fulfil the aforementioned demands posed by IoE applications and therefore, they are often considered as potential enablers of IoE. Here, we present an innovative roll-to-roll manufacturing compatible low cost approach for direct metal interconnection and integration of ultra-thin silicon ICs. The thickness of the fabricated flexible packages with the integrated and interconnected ultra-thin ICs were as thin as 100 μm. Electrical measurements conducted on the 60 fabricated samples with interconnected flexible ultra-thin ICs revealed a very promising yield of 94%.


Sign in / Sign up

Export Citation Format

Share Document