scholarly journals Liquid water contains the building blocks of diverse ice phases

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bartomeu Monserrat ◽  
Jan Gerit Brandenburg ◽  
Edgar A. Engel ◽  
Bingqing Cheng

AbstractWater molecules can arrange into a liquid with complex hydrogen-bond networks and at least 17 experimentally confirmed ice phases with enormous structural diversity. It remains a puzzle how or whether this multitude of arrangements in different phases of water are related. Here we investigate the structural similarities between liquid water and a comprehensive set of 54 ice phases in simulations, by directly comparing their local environments using general atomic descriptors, and also by demonstrating that a machine-learning potential trained on liquid water alone can predict the densities, lattice energies, and vibrational properties of the ices. The finding that the local environments characterising the different ice phases are found in water sheds light on the phase behavior of water, and rationalizes the transferability of water models between different phases.

2019 ◽  
Vol 48 (6) ◽  
pp. 2190-2196 ◽  
Author(s):  
Shuai-Liang Yang ◽  
Yue-Ying Yuan ◽  
Fei Ren ◽  
Chen-Xi Zhang ◽  
Qing-Lun Wang

A novel 2D nickel(ii) complex (1) has been successfully synthesized using a 2,2′-bipyridyl, polycarboxylsulfonate ligand H4SBTC and Ni2+ ions. Owing to the presence of abundant water molecules, hydrogen bond networks and other protons, 1 and its hybrid membranes demonstrate high proton conductivity.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1214
Author(s):  
Sergey N. Podyachev ◽  
Rustem R. Zairov ◽  
Asiya R. Mustafina

The present review is aimed at highlighting outlooks for cyclophanic 1,3-diketones as a new type of versatile ligands and building blocks of the nanomaterial for sensing and bioimaging. Thus, the main synthetic routes for achieving the structural diversity of cyclophanic 1,3-diketones are discussed. The structural diversity is demonstrated by variation of both cyclophanic backbones (calix[4]arene, calix[4]resorcinarene and thiacalix[4]arene) and embedding of different substituents onto lower or upper macrocyclic rims. The structural features of the cyclophanic 1,3-diketones are correlated with their ability to form lanthanide complexes exhibiting both lanthanide-centered luminescence and magnetic relaxivity parameters convenient for contrast effect in magnetic resonance imaging (MRI). The revealed structure–property relationships and the applicability of facile one-pot transformation of the complexes to hydrophilic nanoparticles demonstrates the advantages of 1,3-diketone calix[4]arene ligands and their complexes in developing of nanomaterials for sensing and bioimaging.


2007 ◽  
Vol 62 (10) ◽  
pp. 1235-1245 ◽  
Author(s):  
Simone Schnabel ◽  
Caroline Röhr

Stoichiometric hydrates of Li3VO4, the hexahydrate and two polymorphs of the octahydrate, were prepared by evaporation of alkaline aqueous solutions 1 molar in LiOH and 0.5 molar in the metavanadate LiVO3 at r. t. with or without the addition of Lithium sulfide, i. e. at different pH values. Their crystal structures have been determined and refined using single crystal X-ray data; all lithium and hydrogen atom positions were localised and refined without contraints. All three title compounds crystallise in non-centrosymmetric space groups. The water molecules belong to the tetrahedral coordination spheres of the Li cations, i. e. they are embedded as water of coordination exclusively. The tetrahedral orthovanadate(V) anions VO3−4 and the LiO4 tetrahedra are connected via common O corners to form building units which are further held together by strong, nearly linear hydrogen bonds. The hexahydrate Li3VO4 ・ 6H2O (space group R3, a = 962.9(2), c = 869.2(2) pm, Z = 3, R1 = 0.0260) contains isolated orthovanadate(V) anions VO3−4 surrounded by a 3D network of cornersharing Li(H2O)4 tetrahedra forming rings of three, seven and eight units. The water molecules are ‘isolated’ in the sense that no hydrogen bonds are formed between water molecules. The octahydrate is dimorphous: The triclinic polymorph of Li3VO4 ・ 8H2O (space group P1, a = 592.6(2), b = 651.3(2), c = 730.2(4) pm, α = 89.09(2), β = 89.43(2), γ = 88.968(12)°, Z = 1, R1 = 0.0325) contains two types of chains of tetrahedra: One consists of corner-sharing Li(H2O)4 tetrahedra only, the second one is formed by alternating LiO4 and VO4 tetrahedra, also sharing oxygen corners. Only one water molecule is ‘isolated’, the other seven form a branched fragment of a chain with hydrogen bonds between them. In the monoclinic form of Li3VO4・8H2O (space group Pc, a = 732.6(1), b = 653.7(1), c = 1292.9(3) pm, β = 112.21(1)°, Z = 2, R1 = 0.0289) a fragment of a chain of three LiO4 tetrahedra, two of which share a common edge, and one VO4 tetrahedron represent the formular unit. These building blocks are connected via hydrogen bonds formed by three ‘isolated’ water molecules and a chain fragment of five connected water molecules.


2007 ◽  
Vol 79 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Muriel Hissler ◽  
Christophe Lescop ◽  
Régis Réau

The synthesis and properties of linear π-conjugated systems incorporating phosphole rings are described. Their supramolecular organization in the solid state can be controlled either by chemical modifications or coordination to transition metals of the phosphorus atom. Furthermore, chemical transformations of the phosphole ring allow organizing these P-chromophores in 3D assemblies exhibiting σ-π conjugation or in organometallic ferrocene-like derivatives. Phosphole-pyridine-containing π-conjugated chromophores act as P,N-chelates toward transition-metal ions, giving rise to mono- and di-nuclear complexes. The specific properties of these complexes make them valuable materials for organic light-emitting diodes (OLEDs) and interesting building blocks for the tailoring of π-conjugated systems.


2019 ◽  
Vol 116 (6) ◽  
pp. 2009-2014 ◽  
Author(s):  
Martin Fitzner ◽  
Gabriele C. Sosso ◽  
Stephen J. Cox ◽  
Angelos Michaelides

When an ice crystal is born from liquid water, two key changes occur: (i) The molecules order and (ii) the mobility of the molecules drops as they adopt their lattice positions. Most research on ice nucleation (and crystallization in general) has focused on understanding the former with less attention paid to the latter. However, supercooled water exhibits fascinating and complex dynamical behavior, most notably dynamical heterogeneity (DH), a phenomenon where spatially separated domains of relatively mobile and immobile particles coexist. Strikingly, the microscopic connection between the DH of water and the nucleation of ice has yet to be unraveled directly at the molecular level. Here we tackle this issue via computer simulations which reveal that (i) ice nucleation occurs in low-mobility regions of the liquid, (ii) there is a dynamical incubation period in which the mobility of the molecules drops before any ice-like ordering, and (iii) ice-like clusters cause arrested dynamics in surrounding water molecules. With this we establish a clear connection between dynamics and nucleation. We anticipate that our findings will pave the way for the examination of the role of dynamical heterogeneities in heterogeneous and solution-based nucleation.


Sign in / Sign up

Export Citation Format

Share Document