scholarly journals Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeon Sik Choi ◽  
Yuan-Yu Hsueh ◽  
Jahyun Koo ◽  
Quansan Yang ◽  
Raudel Avila ◽  
...  

AbstractBioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.

Author(s):  
Kuen Tae Park ◽  
Byeongdong Kang ◽  
Hyun Jung Kim ◽  
Dong-Kwon Kim

Advances in semiconductor technology and trends in slim and light electronic systems have led to a significant increase in heat dissipation density of the electronic devices. Therefore, effective cooling technology is essential for reliable operation of electronic components. Among various cooling systems, natural convection heat sinks have been proven to be appropriate because of their inherent simplicity, reliability, and low long-term cost. The present study is focused on natural convective heat transfer from the cylindrical heat sink. Especially, the branched fins, which are motivated by the branched design of nature shown in trees and lungs, are used. The heating power and surface temperature are measured for various types of branched fins and numbers of fins. The result showed that the branched fin dissipates 20% more heat compared to the normal plate fins. Therefore, heat sinks with branched fins have a potential as a next-generation cooling device.


2001 ◽  
Vol 5 (1) ◽  
pp. 146-156
Author(s):  
Giuseppe Riva

The paper presents an overview of the ergonomic/design issues of a VR-enhanced orthopaedic appliance to be used in rehabilitation of patients with Spinal Cord Injury. First, some design considerations are described and an outline of aims which the tool should pursue are given. Finally, the design issues are described focusing both on the development of a test-bed rehabilitation device and on the description of a preliminary study detailing the use of the device with a long-term SCI patient. The basis for this approach is that physical therapy and motivation are crucial for maintaining flexibility and muscle strength and for reorganizing the nervous system after SCIs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenzhong Hou ◽  
Hai Lu ◽  
Ying Li ◽  
Laixia Yang ◽  
Yang Gao

Recently, the fabrication of electronics-related components via direct ink writing (DIW) has attracted much attention. Compared to the conventionally fabricated electronic components, DIW-printed ones have more complicated structures, higher accuracy, improved efficiency, and even enhanced performances that arise from well-designed architectures. The DIW technology allows directly print materials on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Here, recent developments in DIW printing of emerging components for electronics-related applications are briefly reviewed, including electrodes, electronic circuits, and functional components. The printing techniques, processes, ink materials, advantages, and properties of DIW-printed architectures are discussed. Finally, the challenges and outlooks on the manufacture of 3D structured electronic devices by DIW are outlined, pointing out future designs and developments of DIW technology for electronics-related applications. The combination of DIW and electronic devices will help to improve the quality of human life and promote the development of science and society.


Author(s):  
V.I. Kuklin ◽  
V.I. Orlov ◽  
V.V. Fedosov

In this paper we give a brief historical background of the stages of work carried out by “ITC – NPO PM” JSC aimed at ensuring the long-term operation of electronic components for space applications. It is shown that the creation of specialized testing facilities is the optimal approach to make batches of electronic components of the Space quality level. We propose a further scenario to improve reliability of electronic components for space applications, involving the joint work of specialized testing facilities and manufacturing plants to make special batches of devices.


Sign in / Sign up

Export Citation Format

Share Document