scholarly journals Optimal COVID-19 quarantine and testing strategies

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chad R. Wells ◽  
Jeffrey P. Townsend ◽  
Abhishek Pandey ◽  
Seyed M. Moghadas ◽  
Gary Krieger ◽  
...  

AbstractFor COVID-19, it is vital to understand if quarantines shorter than 14 days can be equally effective with judiciously deployed testing. Here, we develop a mathematical model that quantifies the probability of post-quarantine transmission incorporating testing into travel quarantine, quarantine of traced contacts with an unknown time of infection, and quarantine of cases with a known time of exposure. We find that testing on exit (or entry and exit) can reduce the duration of a 14-day quarantine by 50%, while testing on entry shortens quarantine by at most one day. In a real-world test of our theory applied to offshore oil rig employees, 47 positives were obtained with testing on entry and exit to quarantine, of which 16 had tested negative at entry; preventing an expected nine offshore transmission events that each could have led to outbreaks. We show that appropriately timed testing can make shorter quarantines effective.

Author(s):  
Chad R. Wells ◽  
Jeffrey P. Townsend ◽  
Abhishek Pandey ◽  
Seyed M. Moghadas ◽  
Gary Krieger ◽  
...  

AbstractAs economic woes of the COVID-19 pandemic deepen, strategies are being formulated to avoid the need for prolonged stay-at-home orders, while implementing risk-based quarantine, testing, contact tracing and surveillance protocols. Given limited resources and the significant economic, public health, and operational challenges of the current 14-day quarantine recommendation, it is vital to understand if shorter but equally effective quarantine and testing strategies can be deployed. To quantify the probability of post-quarantine transmission upon isolation of a positive test, we developed a mathematical model in which we varied quarantine duration and the timing of molecular tests for three scenarios of entry into quarantine. Specifically, we consider travel quarantine, quarantine of traced contacts with an unknown time if infection, and quarantine of cases with a known time of exposure. With a one-day delay between test and result, we found that testing on exit (or entry and exit) can reduce the duration of a 14-day quarantine by 50%, while testing on entry shortened quarantine by at most one day. Testing on exit more effectively reduces post-quarantine transmission than testing upon entry. Furthermore, we identified the optimal testing date within quarantines of varying duration, finding that testing on exit was most effective for quarantines lasting up to seven days. As a real-world validation of these principles, we analyzed the results of 4,040 SARS CoV-2 RT-PCR tests administered to offshore oil rig employees. Among the 47 positives obtained with a testing on entry and exit strategy, 16 cases that previously tested negative at entry were identified, with no further cases detected among employees following quarantine exit. Moreover, this strategy successfully prevented an expected nine offshore transmission events stemming from cases who had tested negative on the entry test, each one a serious concern for initiating rapid spread and a disabling outbreak in the close quarters of an offshore rig. This successful outcome highlights that appropriately timed testing can make shorter quarantines more effective, thereby minimizing economic impacts, disruptions to operational integrity, and COVID-related public health risks.


2018 ◽  
Author(s):  
Caterina Magri ◽  
Andrew Marantan ◽  
L Mahadevan ◽  
Talia Konkle

India is a worldwide agriculture business powerhouse. Future of agriculture-based products depends on the crop production. A mathematical model might be characterized as a lot of equations that speak to the conduct of a framework. By using mathematical model in agriculture field, we can predict the production of crop in particular area. There are various factors affecting crops such as Rainfall, GHG Emissions, Temperature, Urbanization, climate, humidity etc. A mathematical model is a simplified representation of a real-world system. It forms the system using mathematical principles in the form of a condition or a set of conditions. Suppose we need to increase the crop production, at that time the mathematical model plays a major role and our work can be easier, more significant by using the mathematical model. Through the mathematical model we predict the crop production in upcoming years. .AI, ML, IOT play a major role to predict the future of agriculture, but without mathematical models it is not possible to predict crop production accurately. To solve the real-world agriculture problem, mathematical models play a major role for accurate results. Correlation Analysis, Multiple Regression analysis and fuzzy logic simulation standards have been utilized for building a grain production benefit depending model from crop production. Prediction of crop is beneficiary to the farmer to analyze the crop management. By using the present agriculture data set which is available on the government website, we can build a mathematical model.


2021 ◽  
pp. 193229682110541
Author(s):  
Farid Sanai ◽  
Arshman S. Sahid ◽  
Jacqueline Huvanandana ◽  
Sandra Spoa ◽  
Lachlan H. Boyle ◽  
...  

Background: Frequent blood glucose level (BGL) monitoring is essential for effective diabetes management. Poor compliance is common due to the painful finger pricking or subcutaneous lancet implantation required from existing technologies. There are currently no commercially available non-invasive devices that can effectively measure BGL. In this real-world study, a prototype non-invasive continuous glucose monitoring system (NI-CGM) developed as a wearable ring was used to collect bioimpedance data. The aim was to develop a mathematical model that could use these bioimpedance data to estimate BGL in real time. Methods: The prototype NI-CGM was worn by 14 adult participants with type 2 diabetes for 14 days in an observational clinical study. Bioimpedance data were collected alongside paired BGL measurements taken with a Food and Drug Administration (FDA)-approved self-monitoring blood glucose (SMBG) meter and an FDA-approved CGM. The SMBG meter data were used to improve CGM accuracy, and CGM data to develop the mathematical model. Results: A gradient boosted model was developed using a randomized 80-20 training-test split of data. The estimated BGL from the model had a Mean Absolute Relative Difference (MARD) of 17.9%, with the Parkes error grid (PEG) analysis showing 99% of values in clinically acceptable zones A and B. Conclusions: This study demonstrated the reliability of the prototype NI-CGM at collecting bioimpedance data in a real-world scenario. These data were used to train a model that could successfully estimate BGL with a promising MARD and clinically relevant PEG result. These results will enable continued development of the prototype NI-CGM as a wearable ring.


Author(s):  
Burcin Bozkaya ◽  
Buyang Cao ◽  
Kaan Aktolug

First introduced by Dantzig and Ramser over 50 years ago, vehicle routing problems (VRP) have drawn the attention of both academic researchers and practitioners due to its difficult-to-solve nature and hence its attractiveness in theoretical research as well as wide applicability in real-world settings. Today VRP is probably one of the most widely encountered types of problems for routing and distribution in the service industry. Examples include furniture delivery to a customer’s address, scheduling of bus service pick-up/drop-off for students or company personnel, or service technician routing. The goal of this chapter is to provide a background, mathematical model and various solution approaches on a more commonly encountered variant of the problem, namely the VRP with Time Windows (VRPTW). The authors also present three case studies from their experience in the service industry that are real applications of VRPTW. For each study, they describe the overall approach and methodology, and the positive contributions to the respective company which has implemented enterprise-scale GIS-based systems around the distribution problem of interest.


2013 ◽  
Author(s):  
N. Longépé ◽  
F. Mercier ◽  
E. Greiner ◽  
M. Sutton ◽  
F. Lefèvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document