scholarly journals Crystallization of CsPbBr3 single crystals in water for X-ray detection

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiali Peng ◽  
Chelsea Q. Xia ◽  
Yalun Xu ◽  
Ruiming Li ◽  
Lihao Cui ◽  
...  

AbstractMetal halide perovskites have fascinated the research community over the past decade, and demonstrated unprecedented success in optoelectronics. In particular, perovskite single crystals have emerged as promising candidates for ionization radiation detection, due to the excellent opto-electronic properties. However, most of the reported crystals are grown in organic solvents and require high temperature. In this work, we develop a low-temperature crystallization strategy to grow CsPbBr3 perovskite single crystals in water. Then, we carefully investigate the structure and optoelectronic properties of the crystals obtained, and compare them with CsPbBr3 crystals grown in dimethyl sulfoxide. Interestingly, the water grown crystals exhibit a distinct crystal habit, superior charge transport properties and better stability in air. We also fabricate X-ray detectors based on the CsPbBr3 crystals, and systematically characterize their device performance. The crystals grown in water demonstrate great potential for X-ray imaging with enhanced performance metrics.

2018 ◽  
Vol 28 (3) ◽  
pp. 237 ◽  
Author(s):  
Thuat Nguyen-Tran ◽  
Mai Ngoc An ◽  
Trang Thu Luong ◽  
Hung Huy Nguyen ◽  
Tu Thanh Truong

We report the growth and characterization of different bulk single crystals of organo lead mixed halide perovskites CH3NH3PbI3−xBrx by two different crystal growth approaches: (i)anti-solvent diffusion, and (ii) inverse temperature crystallization. In order to control the size and the shape of crystals, we have investigated different experimental growth parameters such as temperature and precursor concentration. The morphology of obtained crystals was observed by optical microscope, whereas their intrinsic crystalline properties were characterized by single crystal as well as powder X-ray diffraction. The results illustrated that the growth and crystalline structure of mixed halide perovskites CH3NH3PbI3−xBrx could be easily tuned.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yang Li ◽  
Wenyi Shao ◽  
Liang Chen ◽  
Juan Wang ◽  
Jing Nie ◽  
...  

AbstractLow-dimensional perovskite materials and their derivatives with excellent optical performance are promising candidates for light-emission applications. Herein, centimeter lead-halide Cs4PbBr6 single crystals (SCs), which have been used for radiation detection with the indirect conversion method, were synthesized by a facile solution process. The Cs4PbBr6 scintillator exhibits bright green emission peaking at 525 nm and a high photoluminescence quantum yield (up to 86.7%) under 375 nm laser excitation. The Cs4PbBr6 SCs exhibit high sensitivity to 40 keV X-rays, with a favorable linearity with the X-ray exposure dose rate, and the detection limit is as low as 64.4 nGyair/s. The scintillation time-response performance of the Cs4PbBr6 SCs was acquired by a time-correlated single-photon counting system under alpha-particle excitation. The Cs4PbBr6 SCs exhibit a very fast time response (τav = 1.46 ns) to alpha particles from a 241Am radiation source. This value is comparable to that of the commercial plastic scintillator EJ-228 (τav = 1.31 ns) and much faster than that of the LYSO(Ce) scintillator (τav = 36.17 ns). Conceptual X-ray imaging and alpha-particle pulse height spectroscopy experiments were also performed. These results demonstrated the potential of Cs4PbBr6 SCs for radiation detection applications, including X-ray imaging and charged particle detection with fast scintillation decay time and high sensitivity.


2021 ◽  
Vol 4 (9) ◽  
pp. 681-688
Author(s):  
Sarah Deumel ◽  
Albert van Breemen ◽  
Gerwin Gelinck ◽  
Bart Peeters ◽  
Joris Maas ◽  
...  

AbstractTo realize the potential of artificial intelligence in medical imaging, improvements in imaging capabilities are required, as well as advances in computing power and algorithms. Hybrid inorganic–organic metal halide perovskites, such as methylammonium lead triiodide (MAPbI3), offer strong X-ray absorption, high carrier mobilities (µ) and long carrier lifetimes (τ), and they are promising materials for use in X-ray imaging. However, their incorporation into pixelated sensing arrays remains challenging. Here we show that X-ray flat-panel detector arrays based on microcrystalline MAPbI3 can be created using a two-step manufacturing process. Our approach is based on the mechanical soft sintering of a freestanding absorber layer and the subsequent integration of this layer on a pixelated backplane. Freestanding microcrystalline MAPbI3 wafers exhibit a sensitivity of 9,300 µC Gyair–1 cm–2 with a μτ product of 4 × 10–4 cm2 V–1, and the resulting X-ray imaging detector, which has 508 pixels per inch, combines a high spatial resolution of 6 line pairs per millimetre with a low detection limit of 0.22 nGyair per frame.


2020 ◽  
Vol 32 (42) ◽  
pp. 2003353
Author(s):  
Xin Song ◽  
Qingyue Cui ◽  
Yucheng Liu ◽  
Zhuo Xu ◽  
Hagai Cohen ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangeun Cho ◽  
Sungwoo Kim ◽  
Jongmin Kim ◽  
Yongcheol Jo ◽  
Ilhwan Ryu ◽  
...  

Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.


1999 ◽  
Vol 41 (7) ◽  
pp. 1084-1087
Author(s):  
I. K. Polushina ◽  
Yu. V. Rud’ ◽  
T. N. Ushakova ◽  
V. Yu. Rud’

2017 ◽  
Vol 11 (5) ◽  
pp. 315-321 ◽  
Author(s):  
Wei Wei ◽  
Yang Zhang ◽  
Qiang Xu ◽  
Haotong Wei ◽  
Yanjun Fang ◽  
...  

2019 ◽  
Vol 2 (3) ◽  
pp. 1844-1853 ◽  
Author(s):  
Maria João Brites ◽  
Maria Alexandra Barreiros ◽  
Victoria Corregidor ◽  
Luis C. Alves ◽  
Joana V. Pinto ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haotong Wei ◽  
Jinsong Huang

Abstract Halide lead perovskites have attracted increasing attention in recent years for ionizing radiation detection due to their strong stopping power, defect-tolerance, large mobility-lifetime (μτ) product, tunable bandgap and simple single crystal growth from low-cost solution processes. In this review, we start with the requirement of material properties for high performance ionizing radiation detection based on direct detection mechanisms for applications in X-ray imaging and γ-ray energy spectroscopy. By comparing the performances of halide perovskites radiation detectors with current state-of-the-art ionizing radiation detectors, we show the promising features and challenges of halide perovskites as promising radiation detectors.


Sign in / Sign up

Export Citation Format

Share Document