scholarly journals Uncovering transcriptional dark matter via gene annotation independent single-cell RNA sequencing analysis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael F. Z. Wang ◽  
Madhav Mantri ◽  
Shao-Pei Chou ◽  
Gaetano J. Scuderi ◽  
David W. McKellar ◽  
...  

AbstractConventional scRNA-seq expression analyses rely on the availability of a high quality genome annotation. Yet, as we show here with scRNA-seq experiments and analyses spanning human, mouse, chicken, mole rat, lemur and sea urchin, genome annotations are often incomplete, in particular for organisms that are not routinely studied. To overcome this hurdle, we created a scRNA-seq analysis routine that recovers biologically relevant transcriptional activity beyond the scope of the best available genome annotation by performing scRNA-seq analysis on any region in the genome for which transcriptional products are detected. Our tool generates a single-cell expression matrix for all transcriptionally active regions (TARs), performs single-cell TAR expression analysis to identify biologically significant TARs, and then annotates TARs using gene homology analysis. This procedure uses single-cell expression analyses as a filter to direct annotation efforts to biologically significant transcripts and thereby uncovers biology to which scRNA-seq would otherwise be in the dark.

2020 ◽  
Author(s):  
Michael F.Z. Wang ◽  
Madhav Mantri ◽  
Shao-Pei Chou ◽  
Gaetano J. Scuderi ◽  
David McKellar ◽  
...  

ABSTRACTSingle-cell RNA sequencing (scRNA-seq) enables the study of cell biology with high resolution. scRNA-seq expression analyses rely on the availability of a high quality annotation of genes in the genome. Yet, as we show here with scRNA-seq experiments and analyses spanning human, mouse, chicken, mole rat, lemur and sea urchin, gene annotations often fail to cover the full transcriptome of every cell type at every stage of development, in particular for organisms that are not routinely studied. To overcome this hurdle, we created a scRNA-seq analysis routine that recovers biologically relevant information beyond the scope of the best available gene annotation. This is achieved by performing single-cell expression analysis on any region in the genome for which transcriptional products are detected. Our routine identifies transcriptionally active regions (TARs) using a hidden Markov model, generates a matrix of expression levels for all TARs across all cells in a dataset, performs single-cell TAR expression analysis to identify TARs that are biologically significant, and then annotates biologically significant TARs using gene homology analysis. This procedure leverages single-cell expression analyses as a filter to direct annotation efforts to biologically significant transcripts in complex tissues and thereby uncovers biology to which scRNA-seq would otherwise be in the dark.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Yun-Ching Chen ◽  
Abhilash Suresh ◽  
Chingiz Underbayev ◽  
Clare Sun ◽  
Komudi Singh ◽  
...  

AbstractBackgroundIn single-cell RNA-sequencing analysis, clustering cells into groups and differentiating cell groups by differentially expressed (DE) genes are 2 separate steps for investigating cell identity. However, the ability to differentiate between cell groups could be affected by clustering. This interdependency often creates a bottleneck in the analysis pipeline, requiring researchers to repeat these 2 steps multiple times by setting different clustering parameters to identify a set of cell groups that are more differentiated and biologically relevant.FindingsTo accelerate this process, we have developed IKAP—an algorithm to identify major cell groups and improve differentiating cell groups by systematically tuning parameters for clustering. We demonstrate that, with default parameters, IKAP successfully identifies major cell types such as T cells, B cells, natural killer cells, and monocytes in 2 peripheral blood mononuclear cell datasets and recovers major cell types in a previously published mouse cortex dataset. These major cell groups identified by IKAP present more distinguishing DE genes compared with cell groups generated by different combinations of clustering parameters. We further show that cell subtypes can be identified by recursively applying IKAP within identified major cell types, thereby delineating cell identities in a multi-layered ontology.ConclusionsBy tuning the clustering parameters to identify major cell groups, IKAP greatly improves the automation of single-cell RNA-sequencing analysis to produce distinguishing DE genes and refine cell ontology using single-cell RNA-sequencing data.


2021 ◽  
Author(s):  
Olga Borisovna Botvinnik ◽  
Pranathi Vemuri ◽  
N. Tessa Pierce Ward ◽  
Phoenix Aja Logan ◽  
Saba Nafees ◽  
...  

Single-cell RNA-seq (scRNA-seq) is a powerful tool for cell type identification but is not readily applicable to organisms without well-annotated reference genomes. Of the approximately 10 million animal species predicted to exist on earth, >99.9% do not have any submitted genome assembly. To enable scRNA-seq for the vast majority of animals on the planet, here we introduce the concept of "k-mer homology," combining biochemical synonyms in degenerate protein alphabets with uniform data subsampling via MinHash into a pipeline called Kmermaid, to directly detect similar cell types across species from transcriptomic data without the need for a reference genome. Underpinning kmermaid is the tool Orpheum, a memory-efficient method for extracting high-confidence protein-coding sequences from RNA-seq data. After validating kmermaid using datasets from human and mouse lung, we applied Kmermaid to the Chinese horseshoe bat (Rhinolophus sinicus), where we propagated cellular compartment labels at high fidelity. Our pipeline provides a high-throughput tool that enables analyses of transcriptomic data across divergent species' transcriptomes in a genome- and gene annotation-agnostic manner. Thus, the combination of Kmermaid and Orpheum identifies cellular type-specific sequences that may be missing from genome annotations and empowers molecular cellular phenotyping for novel model organisms and species.


Author(s):  
Christopher M Lee ◽  
Galt P Barber ◽  
Jonathan Casper ◽  
Hiram Clawson ◽  
Mark Diekhans ◽  
...  

Abstract The University of California Santa Cruz Genome Browser website (https://genome.ucsc.edu) enters its 20th year of providing high-quality genomics data visualization and genome annotations to the research community. In the past year, we have added a new option to our web BLAT tool that allows search against all genomes, a single-cell expression viewer (https://cells.ucsc.edu), a ‘lollipop’ plot display mode for high-density variation data, a RESTful API for data extraction and a custom-track backup feature. New datasets include Tabula Muris single-cell expression data, GeneHancer regulatory annotations, The Cancer Genome Atlas Pan-Cancer variants, Genome Reference Consortium Patch sequences, new ENCODE transcription factor binding site peaks and clusters, the Database of Genomic Variants Gold Standard Variants, Genomenon Mastermind variants and three new multi-species alignment tracks.


2016 ◽  
Author(s):  
Tallulah S. Andrews ◽  
Martin Hemberg

AbstractFeatures selection is a key step in many single-cell RNASeq (scRNASeq) analyses. Feature selection is intended to preserve biologically relevant information while removing genes only subject to technical noise. As it is frequently performed prior to dimensionality reduction, clustering and pseudotime analyses, feature selection can have a major impact on the results. Several different approaches have been proposed for unsupervised feature selection from unprocessed single-cell expression matrices, most based upon identifying highly variable genes in the dataset. We present two methods which take advantage of the prevalence of zeros (dropouts) in scRNASeq data to identify features. We show that dropout-based feature selection outperforms variance-based feature selection for multiple applications of single-cell RNASeq.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.


Sign in / Sign up

Export Citation Format

Share Document