scholarly journals Holistic face recognition is an emergent phenomenon of spatial processing in face-selective regions

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonia Poltoratski ◽  
Kendrick Kay ◽  
Dawn Finzi ◽  
Kalanit Grill-Spector

AbstractSpatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.

2020 ◽  
Author(s):  
Sonia Poltoratski ◽  
Kendrick Kay ◽  
Dawn Finzi ◽  
Kalanit Grill-Spector

AbstractSpatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial coding in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical ‘holistic’ processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. In face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage were smaller and shifted downward in response to face inversion. From these measurements, we successfully predicted the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial integration in face-selective regions enables holistic processing. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 59-59
Author(s):  
J M Zanker ◽  
M P Davey

Visual information processing in primate cortex is based on a highly ordered representation of the surrounding world. In addition to the retinotopic mapping of the visual field, systematic variations of the orientation tuning of neurons are described electrophysiologically for the first stages of the visual stream. On the way to understanding the relation of position and orientation representation, in order to give an adequate account of cortical architecture, it will be an essential step to define the minimum spatial requirements for detection of orientation. We addressed the basic question of spatial limits for detecting orientation by comparing computer simulations of simple orientation filters with psychophysical experiments in which the orientation of small lines had to be detected at various positions in the visual field. At sufficiently high contrast levels, the minimum physical length of a line whose orientation can just be resolved is not constant when presented at various eccentricities, but covaries inversely with the cortical magnification factor. A line needs to span less than 0.2 mm on the cortical surface in order to be recognised as oriented, independently of the actual eccentricity at which the stimulus is presented. This seems to indicate that human performance for this task approaches the physical limits, requiring hardly more than approximately three input elements to be activated, in order to detect the orientation of a highly visible line segment. Combined with the estimates for receptive field sizes of orientation-selective filters derived from computer simulations, this experimental result may nourish speculations of how the rather local elementary process underlying orientation detection in the human visual system can be assembled to form much larger receptive fields of the orientation-sensitive neurons known to exist in the primate visual system.


1999 ◽  
Vol 11 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Marie T. Banich ◽  
Kara D. Federmeier

In this study we examined Kosslyn's (1987) claim that the right hemisphere exhibits a relative superiority for processing metric spatial relations, whereas the left hemisphere exhibits a relative superiority for processing categorical spatial relations. In particular, we examined whether some failures to observe strong visual field (VF) advantages in previous studies might be due to practice effects that allowed individuals to process tasks in alternative manners (e.g., to process a metric task using a categorical strategy). We used two versions of a task previously employed by Hellige and Michimata (1989) in which individuals judge the metric (distance) or categorical (above/below) spatial relations between a bar and a dot. In one version, the position of the bar was held static. In another, the bar's position varied. This manipulation prevented participants from using the computer screen as a reference frame, forcing them to compute the spatial relationships on the basis of the relevant items only (i.e., the bar and the dot). In the latter, but not the former version of the task we obtained evidence supporting Kosslyn's hypothesis, namely, a significant right visual field (RVF) advantage for categorical spatial processing and a trend toward a left visual field (LVF) advantage for metric spatial processing. Furthermore, the pattern of results for trials on which information was presented centrally (CVF trials) was similar to that observed on RVF trials, whereas the pattern for trials in which identical information was presented in each visual field (BVF trials) was similar to that observed on LVF trials. Such a pattern is consistent with Kosslyn's suggestion that categorical processing is better suited for cells with small receptive fields and metric processing for cells with larger receptive fields.


2019 ◽  
Vol 6 (2) ◽  
pp. 34-45
Author(s):  
Visnja Djordjic

Summary Although sport can promote moral values and prosocial behavior in youth, numerous research shows that sports engagement alone does not guarantee that outcome. Instead of striving for fair-play and sport excellence which not exclude justness, solidarity and moral integrity, contemporary sport frequently follows the Lombardian ethic, where „winning isn’t everything, it’s the only thing”. Moral pause or bracketed morality, as described in sport, refers to the phenomenon of tolerance and acceptance of aggressive behavior or cheating, that will be morally condemned outside sports arenas. Accordingly, lower levels of moral reasoning and behavior have been identified in athletes and non-athletes in the sports-related situation in comparison to other life situations; in athletes when compared to non-athletes, in more experienced athletes, high-level athletes, team-sport athletes, and male athletes. Moral reasoning and behavior of athletes are influenced by contextual and personal factors, with coaches having a particularly important role to play. The positive influence of sport on the moral development of athletes might be related to pre-service and in-service education of coaches how to develop adequate moral atmosphere, and how to plan for moral decision-making as an integral part of everyday practice.


2019 ◽  
Vol 31 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Wladimir Kirsch ◽  
Roland Pfister ◽  
Wilfried Kunde

An object appears smaller in the periphery than in the center of the visual field. In two experiments ( N = 24), we demonstrated that visuospatial attention contributes substantially to this perceptual distortion. Participants judged the size of central and peripheral target objects after a transient, exogenous cue directed their attention to either the central or the peripheral location. Peripheral target objects were judged to be smaller following a central cue, whereas this effect disappeared completely when the peripheral target was cued. This outcome suggests that objects appear smaller in the visual periphery not only because of the structural properties of the visual system but also because of a lack of spatial attention.


2014 ◽  
Vol 523 (2) ◽  
pp. 226-250 ◽  
Author(s):  
Quirin Krabichler ◽  
Tomas Vega-Zuniga ◽  
Cristian Morales ◽  
Harald Luksch ◽  
Gonzalo J. Marín

1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


Sign in / Sign up

Export Citation Format

Share Document