scholarly journals PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thais G. Moreira ◽  
Davide Mangani ◽  
Laura M. Cox ◽  
Jeffrey Leibowitz ◽  
Eduardo. L. C. Lobo ◽  
...  

AbstractThe intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Lin Lang ◽  
Min-Hui Wang ◽  
Kuan-Yu Hung ◽  
Sung-Hao Hsu ◽  
Chih-Kang Chiang ◽  
...  

Background and Objectives. Hyperparathyroidism and hyperphosphatemia contribute to the inflammatory effects in chronic hemodialysis (HD) patients. Interleukin-17-producingCD4+effector memory T (Th17) cells and CD4+CD25+Foxp3 regulatory T (Treg) cells both play critical roles in immune activation and inflammation. We investigated the relationship between the Treg and Th17 cells and the phosphate level in chronic HD patients.Methods. 105 patients aged ≥35 years on chronic HD over 3 months were enrolled. The peripheral blood mononuclear cells were collected, cultured, and stimulated by phytohemagglutinin-L, phorbol myristate acetate, and ionomycin at different time points for T cell differentiation.Results. The T cell differentiation was as follows: Th17 cells (mean ± standard deviation (SD): 25.61% ± 10.2%) and Treg cells (8.45% ± 4.3%). The Th17 cell differentiation was positively correlated with the phosphate and albumin levels and negatively correlated with age. The Treg cell differentiation was negatively correlated with albumin level and age. In the nondiabetes group (n=53), the Th17 cell differentiation was predominantly correlated with the phosphate and iPTH (intact parathyroid hormone) levels as well as the dialysis vintage.Conclusion. Higher phosphate and iPTH levels and longer dialysis duration may increase Th17 cell differentiation, especially in the nondiabetic chronic HD patients.


2016 ◽  
Vol 7 ◽  
Author(s):  
Theodoros Karantanos ◽  
Anthos Chistofides ◽  
Kankana Barhdan ◽  
Lequn Li ◽  
Vassiliki A. Boussiotis

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3312
Author(s):  
Matjaž Weiss ◽  
Marko Anderluh ◽  
Martina Gobec

The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.


Nature ◽  
2019 ◽  
Vol 573 (7773) ◽  
pp. E2-E2
Author(s):  
Will Bailis ◽  
Justin A. Shyer ◽  
Jun Zhao ◽  
Juan Carlos Garcia Canaveras ◽  
Fatimah J. Al Khazal ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 269 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Fayek Ahmad ◽  
Afsar Raza Naqvi

Long noncoding RNA (lncRNA) are a class of endogenous, non-protein coding RNAs that are increasingly being associated with various cellular functions and diseases. Yet, despite their ubiquity and abundance, only a minute fraction of these molecules has an assigned function. LncRNAs show tissue-, cell-, and developmental stage-specific expression, and are differentially expressed under physiological or pathological conditions. The role of lncRNAs in the lineage commitment of immune cells and shaping immune responses is becoming evident. Myeloid cells and lymphoid cells are two major classes of immune systems that work in concert to initiate and amplify innate and adaptive immunity in vertebrates. In this review, we provide mechanistic roles of lncRNA through which these noncoding RNAs can directly participate in the differentiation, polarization, and activation of myeloid (monocyte, macrophage, and dendritic cells) and lymphoid cells (T cells, B cells, and NK cells). While our knowledge on the role of lncRNA in immune cell differentiation and function has improved in the past decade, further studies are required to unravel the biological role of lncRNAs and identify novel mechanisms of lncRNA functions in immune cells. Harnessing the regulatory potential of lncRNAs can provide novel diagnostic and therapeutic targets in treating immune cell related diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document