scholarly journals Reconfigurable multi-component micromachines driven by optoelectronic tweezers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuailong Zhang ◽  
Mohamed Elsayed ◽  
Ran Peng ◽  
Yujie Chen ◽  
Yanfeng Zhang ◽  
...  

AbstractThere is great interest in the development of micromotors which can convert energy to motion in sub-millimeter dimensions. Micromachines take the micromotor concept a step further, comprising complex systems in which multiple components work in concert to effectively realize complex mechanical tasks. Here we introduce light-driven micromotors and micromachines that rely on optoelectronic tweezers (OET). Using a circular micro-gear as a unit component, we demonstrate a range of new functionalities, including a touchless micro-feed-roller that allows the programming of precise three-dimensional particle trajectories, multi-component micro-gear trains that serve as torque- or velocity-amplifiers, and micro-rack-and-pinion systems that serve as microfluidic valves. These sophisticated systems suggest great potential for complex micromachines in the future, for application in microrobotics, micromanipulation, microfluidics, and beyond.

Author(s):  
Martijn van der Steen ◽  
Mark van Twist

The future is inherently uncertain. However, most policies are deliberate attempts to anticipate the future and to change and shape the future in an intended way. This chapter provides concepts for three key elements that are necessary to prepare for an unknown future. First, it conceptualizes what makes the future uncertain; uncertainty does not stem from the amount of time itself, but rather from the dynamics that can play out in that time. That is why it matters significantly if a system is complex or complicated; complex systems are much more dynamic and unpredictable, and complicated systems are much more stable and predictable. Second, there are different approaches for “studying” the dynamics; forecasting and foresight depart from entirely different angles of looking at the future, and both have their own strengths and weakness. Third, there are different organizational strategies for preparing for an unknown future; robustness, resilience, and adaptivity are three possible principles for organizing and preparing for uncertainty. In order to prepare for an uncertain future, or to study the uncertain future, scholars and policymakers should systematically take these three essential steps into account; how is the future unknown, how do we study the future, and what concept for anticipation do we apply here?


2005 ◽  
Vol 3 (3) ◽  
pp. 335-354 ◽  
Author(s):  
Clarissa Ribeiro Pereira de Almeida ◽  
Anja Pratschke ◽  
Renata La Rocca

This paper draws on current research on complexity and design process in architecture and offers a proposal for how architects might bring complex thought to bear on the understanding of design process as a complex system, to understand architecture as a way of organizing events, and of organizing interaction. Our intention is to explore the hypothesis that the basic characteristics of complex systems – emergence, nonlinearity, self-organization, hologramaticity, and so forth – can function as effective tools for conceptualization that can usefully extend the understanding of the way architects think and act throughout the design process. To illustrate the discussions, we show how architects might bring complex thought inside a transdisciplinary design process by using models such as software engineering diagrams, and three-dimensional modeling network environments such as media to integrate, connect and ‘trans–act’.


2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


Author(s):  
Paul Walker ◽  
Ulrich Krohn ◽  
Carty David

ARBTools is a Python library containing a Lekien-Marsden type tricubic spline method for interpolating three-dimensional scalar or vector fields presented as a set of discrete data points on a regular cuboid grid. ARBTools was developed for simulations of magnetic molecular traps, in which the magnitude, gradient and vector components of a magnetic field are required. Numerical integrators for solving particle trajectories are included, but the core interpolator can be used for any scalar or vector field. The only additional system requirements are NumPy.


Author(s):  
Theresa M. Vitolo

Serious games are technology with unrealized potential as an innovation for reasoning about complex systems. The technology is enticing to technologically-savvy individuals, but the acceptance of serious games into mainstream processes requires addressing several systemic issues spanning social, economic, behavioral, and technological aspects. First, deployment of gaming technology for critical processes needs to embrace statistical and scientific methods appropriate for valid, accurate, and verifiable simulation of such processes. Second, identifying the correct instance and application breadth for a serious game within an organization needs to be articulated and supported with research. Third, funding for serious-games initiatives will need to be won as the funding will displace monies previously allocated and championed for other projects. Last, the endeavor faces the problem of negative connotations about its appropriateness as a viable technology for mainstream processes rather than for entertainment and diversion. The chapter examines the chasm serious games must traverse by examining the issues and posing approaches to minimize their effect on the adoption of the technology. The histories of other technologies that faced similar hurdles are compared to the current state of serious games, offering a perspective on the hurdle’s resolution. In the future, the hurdles can be minimized as curricula are developed with the solutions to the issues incorporated in the content.


Sign in / Sign up

Export Citation Format

Share Document