scholarly journals Energy systems in scenarios at net-zero CO2 emissions

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julianne DeAngelo ◽  
Inês Azevedo ◽  
John Bistline ◽  
Leon Clarke ◽  
Gunnar Luderer ◽  
...  

AbstractAchieving net-zero CO2 emissions has become the explicitgoal of many climate-energy policies around the world. Although many studies have assessed net-zero emissions pathways, the common features and tradeoffs of energy systems across global scenarios at the point of net-zero CO2 emissions have not yet been evaluated. Here, we examine the energy systems of 177 net-zero scenarios and discuss their long-term technological and regional characteristics in the context of current energy policies. We find that, on average, renewable energy sources account for 60% of primary energy at net-zero (compared to ∼14% today), with slightly less than half of that renewable energy derived from biomass. Meanwhile, electricity makes up approximately half of final energy consumed (compared to ∼20% today), highlighting the extent to which solid, liquid, and gaseous fuels remain prevalent in the scenarios even when emissions reach net-zero. Finally, residual emissions and offsetting negative emissions are not evenly distributed across world regions, which may have important implications for negotiations on burden-sharing, human development, and equity.

2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 225-235
Author(s):  
Aleksandra Cenejac ◽  
Radivoje Bjelakovic ◽  
Aleksandar Andjelkovic ◽  
Damir Djakovic

Rational use of energy, improving energy performance of buildings and use of renewable energy sources are the most important measures for reducing consumption of non-renewable primary energy (solid, liquid, and gaseous fuels), environmental protection and for the future sustainable development of mankind. In the total primary energy consumption great part is related to building industry, for heating spaces in which people stay and live. Renewable energy sources (RES) present natural resources and they are one of the alternatives that allow obtaining heat for heating buildings, and by that they provide a significant contribution to the energy balance of a country. This paper analyzes the participation of ground source as RES, when the vertical (the probe in the ground) and horizontal (registry in the ground) heat exchangers are used for covering heating load of the building.


2021 ◽  
Vol 294 ◽  
pp. 01004
Author(s):  
Sonja Kallio ◽  
Monica Siroux

To reduce carbon and greenhouse gas emissions, the more efficient and environmentally friendly energy production in the building sector is required. The deployment of renewable energy based microcogeneration units in the decentralized hybrid energy systems is a part of the solution. The micro combined heat and power (micro-CHP), or co-generation, units produce simultaneously heat and electricity from a single fuel source at high efficiency and close to the consumption point. These units offer significant benefits: reduced primary energy consumption, reduced CO2 emissions, and avoidance of distribution losses due to central plant and network construction. The objective of this paper is to present a review of available renewable energy based micro-CHP systems and to focus on the biomass and solar based conversion devices. Finally, a novel hybrid renewable energy system is presented by coupling renewable energy sources, such as solar and biomass for micro-CHP.


2020 ◽  
Vol 12 (14) ◽  
pp. 5570 ◽  
Author(s):  
Yuehong Lu ◽  
Mohammed Alghassab ◽  
Manuel S. Alvarez-Alvarado ◽  
Hasan Gunduz ◽  
Zafar A. Khan ◽  
...  

Generation system interruptions in net-zero energy buildings (NZEBs) may result in missing the net-zero targets by a great margin. Consequently, it is significant to incorporate a realistic reliability model for renewable energy systems (RESs) that considers aging and long-term weather conditions. This study proposed a robust design optimization method that deals with the selection of RES to achieve NZEB. Different case studies were evaluated: 1. Deterministic approach; 2. Markov chain-based reliability without the aging effect; 3. Markov chain-based reliability with the aging effect. The results showed that the optimal sizes of RES, considering the aging effect, were much larger than the other two cases based on the annual energy balance. Moreover, the consideration of the aging effect on the reliability assessment of the generation system for NZEB opens a pathway for a more robust and economic design of RES.


2020 ◽  
Vol 1 (2) ◽  
pp. 189-193
Author(s):  
Aisha Naiga ◽  
Loyola Rwabose Karobwa

Over 90% of Uganda's power is generated from renewable sources. Standardised Implementation Agreements and Power Purchase Agreements create a long-term relationship between Generating Companies and the state-owned off-taker guaranteed by Government. The COVID-19 pandemic and measures to curb the spread of the virus have triggered the scrutiny and application of force majeure (FM) clauses in these agreements. This article reviews the FM clauses and considers their relevance. The authors submit that FM clauses are a useful commercial tool for achieving energy justice by ensuring the continuity of the project, despite the dire effects of the pandemic. Proposals are made for practical considerations for a post-COVID-19 future which provides the continued pursuit of policy goals of promoting renewable energy sources and increasing access to clean energy, thus accelerating just energy transitions.


Author(s):  
Almas Heshmati ◽  
Shahrouz Abolhosseini

This chapter reviews relevant literature on the current state and effectiveness of developing renewable energy on energy security in general, and on energy security in the European Union (EU) in particular. The chapter elaborates on primary energy import sources, possible alternatives, and how energy security is affected by the sources of supply. It also gives an analysis of the effects of the Ukrainian crisis, the isolation of Iran on diversification sources, and on European energy security. It examines EU’s energy policy, analyses the best motivation for a new energy policy direction within Europe, and suggests alternative solutions for enhanced energy supply security. The aim is to suggest suitable solutions for energy security in Europe through energy supply diversification. Supply diversification includes alternative energy corridors for reducing dependency on Russia as a supplier and enhancing the power generated by renewable energy sources under the European Union 2020 strategy.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 903 ◽  
Author(s):  
Ivan Trifonov ◽  
Dmitry Trukhan ◽  
Yury Koshlich ◽  
Valeriy Prasolov ◽  
Beata Ślusarczyk

In this study we aimed to determine the extent to which changes in the share of renewable energy sources, their structural complex, and the level of energy security in Eastern Europe, Caucasus and Central Asia (EECCA) countries in the medium- and long-term are interconnected. The study was performed through modeling and determination of the structural characteristics of energy security in the countries. The methodology of the approach to modeling was based on solving the problem of nonlinear optimization by selecting a certain scenario. For the study, the data of EECCA countries were used. The ability of EECCA countries to benefit from long-term indirect and induced advantages of the transformation period depends on the extent to which their domestic supply chains facilitate the deployment of energy transformation and induced economic activity. This study provides an opportunity to assess the degree of influence of renewable energy sources on the level of energy security of countries in the context of energy resource diversification. The high degree of influence of renewable energy sources on energy security in the EECCA countries has been proven in the implementation of the developed scenarios for its increase. Energy security is growing. At the same time, its level depends not only on an increase in the share of renewable sources but also on the structure of energy resources complex of countries, and the development of various renewable energy sources. Therefore, today the EECCA countries are forced not only to increase the share of renewable energy sources but also to attach strategic importance to the structural content of their energy complex.


2021 ◽  
Author(s):  
Muflih A. Adnan ◽  
Mohd Adnan Khan ◽  
Pulickel M. Ajayan ◽  
Muhammad M. Rahman ◽  
Jinguang Hu ◽  
...  

The race to decarbonize our energy systems has led to significant advancement in technologies for harvesting renewable energy, carbon capture and conversion. Futures scenarios are being envisioned where CO2 is...


Author(s):  
Jishu Mary Gomez ◽  
Prabhakar Karthikeyan Shanmugam

Background & Objectives: The global power system is in a state of continuous evolution, incorporating more and more renewable energy systems. The converter-based systems are void of inherent inertia control behavior and are unable to curb minor frequency deviations. The traditional power system, on the other hand, is made up majorly of synchronous generators that have their inertia and governor response for frequency control. For improved inertial and primary frequency response, the existing frequency control methods need to be modified and an additional power reserve is to be maintained mandatorily for this purpose. Energy self-sufficient renewable distributed generator systems can be made possible through optimum active power control techniques. Also, when major global blackouts were analyzed for causes, solutions, and precautions, load shedding techniques were found to be a useful tool to prevent frequency collapse due to power imbalances. The pre-existing load shedding techniques were designed for traditional power systems and were tuned to eliminate low inertia generators as the first step to system stability restoration. To incorporate emerging energy possibilities, the changes in the mixed power system must be addressed and new frequency control capabilities of these systems must be researched. Discussion: In this paper, the power reserve control schemes that enable frequency regulation in the widely incorporated solar photovoltaic and wind turbine generating systems are discussed. Techniques for Under Frequency Load Shedding (UFLS) that can be effectively implemented in renewable energy enabled micro-grid environment for frequency regulation are also briefly discussed. The paper intends to study frequency control schemes and technologies that promote the development of self- sustaining micro-grids. Conclusion: The area of renewable energy research is fast emerging with immense scope for future developments. The comprehensive literature study confirms the possibilities of frequency and inertia response enhancement through optimum energy conservation and control of distributed energy systems.


Sign in / Sign up

Export Citation Format

Share Document