scholarly journals Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lili Lin ◽  
Jinjia Liu ◽  
Xi Liu ◽  
Zirui Gao ◽  
Ning Rui ◽  
...  

AbstractReversing the thermal induced sintering phenomenon and forming high temperature stable fine dispersed metallic centers with unique structural and electronic properties is one of the ever-lasting targets of heterogeneous catalysis. Here we report that the dispersion of metallic Ni particles into under-coordinated two-dimensional Ni clusters over γ-Mo2N is a thermodynamically favorable process based on the AIMD simulation. A Ni-4nm/γ-Mo2N model catalyst is synthesized and used to further study the reverse sintering effect by the combination of multiple in-situ characterization methods, including in-situ quick XANES and EXAFS, ambient pressure XPS and environmental SE/STEM etc. The under-coordinated two-dimensional layered Ni clusters on molybdenum nitride support generated from the Ni-4nm/γ-Mo2N has been demonstrated to be a thermally stable catalyst in 50 h stability test in CO2 hydrogenation, and exhibits a remarkable catalytic selectivity reverse compared with traditional Ni particles-based catalyst, leading to a chemo-specific CO2 hydrogenation to CO.

2021 ◽  
Author(s):  
Lili Lin ◽  
Jinjia Liu ◽  
Xi Liu ◽  
Zirui Gao ◽  
Ning Rui ◽  
...  

Abstract The reverse sintering effect of Ni particles under thermal treatment has been observed in the Ni/γ-Mo2N catalysts. The ab initio molecular dynamic simulation has demonstrated the redispersion of metallic Ni particles into under-coordinated two-dimensional Ni clusters over γ-Mo2N is a thermodynamically favorable process. Utilizing pre-synthesized 4 nm Ni nanoparticles as the loaded particles, a Ni-4nm/γ-Mo2N model catalyst was synthesized and used to study the reverse sintering effect by the combination of multiple in-situ characterization methods, including in-situ quick XANES and EXAFS, ambient pressure XPS and environmental SE/STEM etc. The theoretical and experimental studies both confirmed the reverse sintering effect in the Ni-γ-Mo2N system is driven by the strong metal-support interaction between Ni and γ-Mo2N. The potential application of the reverse sintering effect in heterogeneous catalysis has been realized using the high temperature favored CO2 hydrogenation reaction. The under-coordinated two-dimensional layered Ni clusters on molybdenum nitride support generated from the Ni-4nm/γ-Mo2N has been demonstrated to be a thermally stable catalyst in 50 h stability test, and exhibits a remarkable catalytic selectivity reverse compared with traditional Ni based catalyst, leading to a chemo-specific CO2 hydrogenation to CO.


1993 ◽  
Vol 17 (1-2) ◽  
pp. 29-37 ◽  
Author(s):  
T. Arunarkavalli ◽  
G. U. Kulkarni ◽  
G. Sankar ◽  
C. N. R. Rao

2019 ◽  
Vol 9 (4) ◽  
pp. 992-1003 ◽  
Author(s):  
Mengdie Lv ◽  
Jicheng Zhou ◽  
Yanji Zhang

The existence of strong metal–support interaction between Ni and CeO2 supported on carrier can enhance the structural and electronic properties.


2020 ◽  
Vol 8 (32) ◽  
pp. 16582-16589 ◽  
Author(s):  
Xulei Sui ◽  
Lei Zhang ◽  
Junjie Li ◽  
Kieran Doyle-Davis ◽  
Ruying Li ◽  
...  

A facile in situ ion-exchanging strategy directly enhances metal–support interactions between Pt and support and promotes HER electrocatalytic performance in acidic media.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 889 ◽  
Author(s):  
Xianming Zhang ◽  
Shuang Chen ◽  
Fengjiao Wang ◽  
Lidan Deng ◽  
Jianmin Ren ◽  
...  

A series of Ni/KIT6 catalyst precursors with 25 wt.% Ni loading amount were reduced in H2 at 400, 450, 500, and 550 °C, respectively. The studied catalysts were investigated by XRD, Quasi in-situ XPS, BET, TEM, and H2-TPD/Ranalysis methods. It was found that reduction temperature is an important factor affecting the hydrodeoxygenation (HDO) performance of the studied catalysts because of the Strong Metal Support Interaction Effect (SMSI). The reduction temperature influences mainly the content of active components, crystal size, and the abilityfor adsorbing and activating H2. The developed pore structure and large specific surface area of the KIT-6 support favored the Ni dispersion. The RT450 catalyst, which was prepared in H2 atmosphere at 450 °C, has the best HDO performance. Ethyl acetate can be completely transformed and maintain 96.8% ethane selectivity and 3.2% methane selectivity at 300 °C. The calculated apparent activation energies of the prepared catalysts increased in the following order: RT550 > RT400 > RT500 > RT450.


2012 ◽  
Vol 116 (27) ◽  
pp. 14342-14349 ◽  
Author(s):  
V. Papaefthimiou ◽  
T. Dintzer ◽  
M. Lebedeva ◽  
D. Teschner ◽  
M. Hävecker ◽  
...  

2017 ◽  
Vol 19 (6) ◽  
pp. 4199-4207 ◽  
Author(s):  
Catherine K. S. Choong ◽  
Luwei Chen ◽  
Yonghua Du ◽  
Martin Schreyer ◽  
S. W. Daniel Ong ◽  
...  

Effect of metal–support interaction on the generation of Rh–FexOy active sites is investigated via various in situ techniques.


Sign in / Sign up

Export Citation Format

Share Document