scholarly journals Freezing of few nanometers water droplets

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alireza Hakimian ◽  
Mohammadjavad Mohebinia ◽  
Masoumeh Nazari ◽  
Ali Davoodabadi ◽  
Sina Nazifi ◽  
...  

AbstractWater-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.

2014 ◽  
Vol 14 (16) ◽  
pp. 23711-23744
Author(s):  
E. S. Thomson ◽  
X. Kong ◽  
P. Papagiannakopoulos ◽  
J. B. C. Pettersson

Abstract. The environmental chamber of a molecular beam apparatus is used to study deposition nucleation of ice on graphite, alcohols and acetic and nitric acids at temperatures between 155 and 200 K. The critical supersaturations necessary to spontaneously nucleate water ice on six different substrate materials are observed to occur at higher supersaturations than are theoretically predicted. This contradictory result motivates more careful examination of the experimental conditions and the underlying basis of the current theories. An analysis based on classical nucleation theory supports the view that at these temperatures nucleation is primarily controlled by the rarification of the vapor and the strength of water's interaction with the substrate surface. The technique enables a careful probing of the underlying processes of ice nucleation and the substrate materials of study. The relevance of the findings to tropospheric temperatures is discussed.


2015 ◽  
Vol 15 (4) ◽  
pp. 1621-1632 ◽  
Author(s):  
E. S. Thomson ◽  
X. Kong ◽  
P. Papagiannakopoulos ◽  
J. B. C. Pettersson

Abstract. The environmental chamber of a molecular beam apparatus is used to study deposition nucleation of ice on graphite, alcohols and acetic and nitric acids at temperatures between 155 and 200 K. The critical supersaturations necessary to spontaneously nucleate water ice on six different substrate materials are observed to occur at higher supersaturations than are theoretically predicted. This contradictory result motivates more careful examination of the experimental conditions and the underlying basis of the current theories. An analysis based on classical nucleation theory supports the view that at these temperatures nucleation is primarily controlled by the rarification of the vapor and the strength of water's interaction with the substrate surface. The technique enables a careful probing of the underlying processes of ice nucleation and the substrate materials of study. The findings are relevant to atmospheric nucleation processes that are intrinsically linked to cold cloud formation and lifetime.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 392
Author(s):  
Nobuo Maeda

The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth’s radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author’s wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.


2007 ◽  
Vol 7 (19) ◽  
pp. 5081-5091 ◽  
Author(s):  
C. Marcolli ◽  
S. Gedamke ◽  
T. Peter ◽  
B. Zobrist

Abstract. A differential scanning calorimeter (DSC) was used to explore heterogeneous ice nucleation of emulsified aqueous suspensions of two Arizona test dust (ATD) samples with particle diameters of nominally 0–3 and 0–7 μm, respectively. Aqueous suspensions with ATD concentrations of 0.01–20 wt% have been investigated. The DSC thermograms exhibit a homogeneous and a heterogeneous freezing peak whose intensity ratios vary with the ATD concentration in the aqueous suspensions. Homogeneous freezing temperatures are in good agreement with recent measurements by other techniques. Depending on ATD concentration, heterogeneous ice nucleation occurred at temperatures as high as 256 K or down to the onset of homogeneous ice nucleation (237 K). For ATD-induced ice formation Classical Nucleation Theory (CNT) offers a suitable framework to parameterize nucleation rates as a function of temperature, experimentally determined ATD size, and emulsion droplet volume distributions. The latter two quantities serve to estimate the total heterogeneous surface area present in a droplet, whereas the suitability of an individual heterogeneous site to trigger nucleation is described by the compatibility function (or contact angle) in CNT. The intensity ratio of homogeneous to heterogeneous freezing peaks is in good agreement with the assumption that the ATD particles are randomly distributed amongst the emulsion droplets. The observed dependence of the heterogeneous freezing temperatures on ATD concentrations cannot be described by assuming a constant contact angle for all ATD particles, but requires the ice nucleation efficiency of ATD particles to be (log)normally distributed amongst the particles. Best quantitative agreement is reached when explicitly assuming that high-compatibility sites are rare and that therefore larger particles have on average more and better active sites than smaller ones. This analysis suggests that a particle has to have a diameter of at least 0.1 μm to exhibit on average one active site.


2015 ◽  
Vol 15 (7) ◽  
pp. 3703-3717 ◽  
Author(s):  
I. Steinke ◽  
C. Hoose ◽  
O. Möhler ◽  
P. Connolly ◽  
T. Leisner

Abstract. Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m−2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = −(T−273.2)+(Sice−1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.


2014 ◽  
Vol 14 (14) ◽  
pp. 7665-7680 ◽  
Author(s):  
D. Barahona

Abstract. In this work a new thermodynamic framework is developed and used to investigate the effect of water activity on the formation of ice within supercooled droplets. The new framework is based on a novel concept where the interface is assumed to be made of liquid molecules "trapped" by the solid matrix. It also accounts for the change in the composition of the liquid phase upon nucleation. Using this framework, new expressions are developed for the critical ice germ size and the nucleation work with explicit dependencies on temperature and water activity. However unlike previous approaches, the new model does not depend on the interfacial tension between liquid and ice. The thermodynamic framework is introduced within classical nucleation theory to study the effect of water activity on the ice nucleation rate. Comparison against experimental results shows that the new approach is able to reproduce the observed effect of water activity on the nucleation rate and the freezing temperature. It allows for the first time a phenomenological derivation of the constant shift in water activity between melting and nucleation. The new framework offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 532 ◽  
Author(s):  
Akalabya Bissoyi ◽  
Naama Reicher ◽  
Michael Chasnitsky ◽  
Sivan Arad ◽  
Thomas Koop ◽  
...  

Ice-binding proteins (IBPs) are found in many organisms, such as fish and hexapods, plants, and bacteria that need to cope with low temperatures. Ice nucleation and thermal hysteresis are two attributes of IBPs. While ice nucleation is promoted by large proteins, known as ice nucleating proteins, the smaller IBPs, referred to as antifreeze proteins (AFPs), inhibit the growth of ice crystals by up to several degrees below the melting point, resulting in a thermal hysteresis (TH) gap between melting and ice growth. Recently, we showed that the nucleation capacity of two types of IBPs corresponds to their size, in agreement with classical nucleation theory. Here, we expand this finding to additional IBPs that we isolated from snow fleas (the arthropod Collembola), collected in northern Israel. Chemical analyses using circular dichroism and Fourier-transform infrared spectroscopy data suggest that these IBPs have a similar structure to a previously reported snow flea antifreeze protein. Further experiments reveal that the ice-shell purified proteins have hyperactive antifreeze properties, as determined by nanoliter osmometry, and also exhibit low ice-nucleation activity in accordance with their size.


2013 ◽  
Vol 13 (13) ◽  
pp. 6603-6622 ◽  
Author(s):  
Y. J. Rigg ◽  
P. A. Alpert ◽  
D. A. Knopf

Abstract. Immersion freezing of water and aqueous (NH4)2SO4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215 K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of the ice melting curve as a function of solution aw by Δaw = 0.2703 and 0.2466, respectively. Corresponding hetrogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5)×104 and (5.4 ± 1.4)×104 cm−2 s−1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δaw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α(T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α(T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or active sites distribution to fit all individual aw immersion freezing data simultaneously, frozen fraction curves are not reproduced. This implies that these fitting formulations cannot be applied to immersion freezing of aqueous solutions, and suggests that derived fit parameters do not represent independent particle properties. Thus, from fitting frozen fractions only, the underlying ice nucleation mechanism and nature of the ice nucleating sites cannot be inferred. In contrast to using fitted functions obtained to represent experimental conditions only, we suggest to use experimentally derived Jhet as a function of temperature and aw that can be applied to conditions outside of those probed in laboratory. This is because Jhet(T) is independent of time and IN surface areas in contrast to the fit parameters obtained by representation of experimentally derived frozen fractions.


2015 ◽  
Vol 15 (21) ◽  
pp. 31867-31889
Author(s):  
K.-T. O ◽  
R. Wood

Abstract. In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.


2014 ◽  
Vol 14 (17) ◽  
pp. 24273-24309 ◽  
Author(s):  
B. G. Pummer ◽  
C. Budke ◽  
S. Augustin-Bauditz ◽  
D. Niedermeier ◽  
L. Felgitsch ◽  
...  

Abstract. Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which is a foreign body in the water that functions as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We put in perspective that also dissolved single macromolecules can induce ice nucleation: they are several nanometers in size, which is also the size range of the necessary critical cluster. As the critical cluster size is temperature-dependent, we see a correlation between the size of such ice nucleating macromolecules and the ice nucleation temperature. Such ice nucleating macromolecules have been already found in many different biological species and are as manifold in their chemistry. Therefore, we additionally compare them to each other, based on a composition of former, recent and yet unpublished studies. Combining these data with calculations from Classical Nucleation Theory, we want to foster a more molecular view of ice nucleation among scientists.


Sign in / Sign up

Export Citation Format

Share Document