scholarly journals Fine-scale population structure and demographic history of British Pakistanis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elena Arciero ◽  
Sufyan A. Dogra ◽  
Daniel S. Malawsky ◽  
Massimo Mezzavilla ◽  
Theofanis Tsismentzoglou ◽  
...  

AbstractPrevious genetic and public health research in the Pakistani population has focused on the role of consanguinity in increasing recessive disease risk, but little is known about its recent population history or the effects of endogamy. Here, we investigate fine-scale population structure, history and consanguinity patterns using genotype chip data from 2,200 British Pakistanis. We reveal strong recent population structure driven by the biraderi social stratification system. We find that all subgroups have had low recent effective population sizes (Ne), with some showing a decrease 15‒20 generations ago that has resulted in extensive identity-by-descent sharing and homozygosity, increasing the risk of recessive disorders. Our results from two orthogonal methods (one using machine learning and the other coalescent-based) suggest that the detailed reporting of parental relatedness for mothers in the cohort under-represents the true levels of consanguinity. These results demonstrate the impact of cultural practices on population structure and genomic diversity in Pakistanis, and have important implications for medical genetic studies.

2020 ◽  
Author(s):  
Elena Arciero ◽  
Sufyan A. Dogra ◽  
Massimo Mezzavilla ◽  
Theofanis Tsismentzoglou ◽  
Qin Qin Huang ◽  
...  

AbstractPrevious genetic and public health research in the Pakistani population has focused on the role of consanguinity in increasing recessive disease risk, but little is known about its recent population history or the effects of endogamy. Here, we investigate fine-scale population structure, history and consanguinity patterns using genetic and questionnaire data from >4,000 British Pakistani individuals, mostly with roots in Azad Kashmir and Punjab. We reveal strong recent population structure driven by the biraderi social stratification system. We find that all subgroups have had low effective population sizes (Ne) over the last 50 generations, with some showing a decrease in Ne 15-20 generations ago that has resulted in extensive identity-by-descent sharing and increased homozygosity. Using new theory, we show that the footprint of regions of homozygosity in the two largest subgroups is about twice that expected naively based on the self-reported consanguinity rates and the inferred historical Ne trajectory. These results demonstrate the impact of the cultural practices of endogamy and consanguinity on population structure and genomic diversity in British Pakistanis, and have important implications for medical genetic studies.


2020 ◽  
Vol 29 (16) ◽  
pp. 2803-2811
Author(s):  
James P Cook ◽  
Anubha Mahajan ◽  
Andrew P Morris

Abstract The UK Biobank is a prospective study of more than 500 000 participants, which has aggregated data from questionnaires, physical measures, biomarkers, imaging and follow-up for a wide range of health-related outcomes, together with genome-wide genotyping supplemented with high-density imputation. Previous studies have highlighted fine-scale population structure in the UK on a North-West to South-East cline, but the impact of unmeasured geographical confounding on genome-wide association studies (GWAS) of complex human traits in the UK Biobank has not been investigated. We considered 368 325 white British individuals from the UK Biobank and performed GWAS of their birth location. We demonstrate that widely used approaches to adjust for population structure, including principal component analysis and mixed modelling with a random effect for a genetic relationship matrix, cannot fully account for the fine-scale geographical confounding in the UK Biobank. We observe significant genetic correlation of birth location with a range of lifestyle-related traits, including body-mass index and fat mass, hypertension and lung function, even after adjustment for population structure. Variants driving associations with birth location are also strongly associated with many of these lifestyle-related traits after correction for population structure, indicating that there could be environmental factors that are confounded with geography that have not been adequately accounted for. Our findings highlight the need for caution in the interpretation of lifestyle-related trait GWAS in UK Biobank, particularly in loci demonstrating strong residual association with birth location.


2018 ◽  
Author(s):  
Leonardo Arias ◽  
Roland Schröder ◽  
Alexander Hübner ◽  
Guillermo Barreto ◽  
Mark Stoneking ◽  
...  

ABSTRACTHuman populations often exhibit contrasting patterns of genetic diversity in the mtDNA and the non-recombining portion of the Y-chromosome (NRY), which reflect sex-specific cultural behaviors and population histories. Here, we sequenced 2.3 Mb of the NRY from 284 individuals representing more than 30 Native-American groups from Northwestern Amazonia (NWA) and compared these data to previously generated mtDNA genomes from the same groups, to investigate the impact of cultural practices on genetic diversity and gain new insights about NWA population history. Relevant cultural practices in NWA include postmarital residential rules and linguistic-exogamy, a marital practice in which men are required to marry women speaking a different language.We identified 2,969 SNPs in the NRY sequences; only 925 SNPs were previously described. The NRY and mtDNA data showed that males and females experienced different demographic histories: the female effective population size has been larger than that of males through time, and both markers show an increase in lineage diversification beginning ~5,000 years ago, with a male-specific expansion occurring ~3,500 years ago. These dates are too recent to be associated with agriculture, therefore we propose that they reflect technological innovations and the expansion of regional trade networks documented in the archaeological evidence. Furthermore, our study provides evidence of the impact of postmarital residence rules and linguistic exogamy on genetic diversity patterns. Finally, we highlight the importance of analyzing high-resolution mtDNA and NRY sequences to reconstruct demographic history, since this can differ considerably between males and females.


2018 ◽  
Author(s):  
Clare Bycroft ◽  
Ceres Fernandez-Rozadilla ◽  
Clara Ruiz-Ponte ◽  
Inés Quintela-García ◽  
Ángel Carracedo ◽  
...  

Genetic differences within or between human populations (population structure) has been studied using a variety of approaches over many years. Recently there has been an increasing focus on studying genetic differentiation at fine geographic scales, such as within countries. Identifying such structure allows the study of recent population history, and identifies the potential for confounding in association studies, particularly when testing rare, often recently arisen variants. The Iberian Peninsula is linguistically diverse, has a complex demographic history, and is unique among European regions in having a centuries-long period of Muslim rule. Previous genetic studies of Spain have examined either a small fraction of the genome or only a few Spanish regions. Thus, the overall pattern of fine-scale population structure within Spain remains uncharacterised. Here we analyse genome-wide genotyping array data for 1,413 Spanish individuals sampled from all regions of Spain. We identify extensive fine-scale structure, down to unprecedented scales, smaller than 10 Km in some places. We observe a major axis of genetic differentiation that runs from east to west of the peninsula. In contrast, we observe remarkable genetic similarity in the north-south direction, and evidence of historical north-south population movement. Finally, without making particular prior assumptions about source populations, we show that modern Spanish people have regionally varying fractions of ancestry from a group most similar to modern north Moroccans. The north African ancestry results from an admixture event, which we date to 860 - 1120 CE, corresponding to the early half of Muslim rule. Our results indicate that it is possible to discern clear genetic impacts of the Muslim conquest and population movements associated with the subsequent Reconquista.


2017 ◽  
Author(s):  
Benjamin Marco Peter ◽  
Desislava Petkova ◽  
John Novembre

Geographic patterns in human genetic diversity carry footprints of population history1,2 and provide insights for genetic medicine and its application across human populations3,4. Summarizing and visually representing these patterns of diversity has been a persistent goal for human geneticists5–10, and has revealed that genetic differentiation is frequently correlated with geographic distance. However, most analytical methods to represent population structure11–15 do not incorporate geography directly, and it must be considered post hoc alongside a visual summary. Here, we use a recently developed spatially explicit method to estimate “effective migration” surfaces to visualize how human genetic diversity is geographically structured (the EEMS method16). The resulting surfaces are “rugged”, which indicates the relationship between genetic and geographic distance is heterogenous and distorted as a rule. Most prominently, topographic and marine features regularly align with increased genetic differentiation (e.g. the Sahara desert, Mediterranean Sea or Himalaya at large scales; the Adriatic, interisland straits in near Oceania at smaller scales). In other cases, the locations of historical migrations and boundaries of language families align with migration features. These results provide visualizations of human genetic diversity that reveal local patterns of differentiation in detail and emphasize that while genetic similarity generally decays with geographic distance, there have regularly been factors that subtly distort the underlying relationship across space observed today. The fine-scale population structure depicted here is relevant to understanding complex processes of human population history and may provide insights for geographic patterning in rare variants and heritable disease risk.


2016 ◽  
Author(s):  
Caitlin Uren ◽  
Minju Kim ◽  
Alicia R Martin ◽  
Dean Bobo ◽  
Christopher R Gignoux ◽  
...  

Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until about 2,000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about population history within southern Africa. We examine new genome-wide polymorphism data and whole mitochondrial genomes for more than one hundred South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share recent ancestry with other Khoe-speaking forager populations that forms a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu-speakers, approximately 14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited impact from eastern African genetic diffusion.


2020 ◽  
Author(s):  
Ao Lan ◽  
Kang Kang ◽  
Senwei Tang ◽  
Xiaoli Wu ◽  
Lizhong Wang ◽  
...  

ABSTRACTHan Chinese is the most populated ethnic group across the globe with a comprehensive substructure that resembles its cultural diversification. Studies have constructed the genetic polymorphism spectrum of Han Chinese, whereas high-resolution investigations are still missing to unveil its fine-scale substructure and trace the genetic imprints for its demographic history. Here we construct a haplotype network consisted of 111,000 genome-wide genotyped Han Chinese individuals from direct-to-consumer genetic testing and over 1.3 billion identity-by-descent (IBD) links. We observed a clear separation of the northern and southern Han Chinese and captured 5 subclusters and 17 sub-subclusters in haplotype network hierarchical clustering, corresponding to geography (especially mountain ranges), immigration waves, and clans with cultural-linguistic segregation. We inferred differentiated split histories and founder effects for population clans Cantonese, Hakka, and Minnan-Chaoshanese in southern China, and also unveiled more recent demographic events within the past few centuries, such as Zou Xikou and Chuang Guandong. The composition shifts of the native and current residents of four major metropolitans (Beijing, Shanghai, Guangzhou, and Shenzhen) imply a rapidly vanished genetic barrier between subpopulations. Our study yields a fine-scale population structure of Han Chinese and provides profound insights into the nation’s genetic and cultural-linguistic multiformity.


2017 ◽  
Author(s):  
Caitlin Uren ◽  
Minju Kim ◽  
Alicia R. Martin ◽  
Dean Bobo ◽  
Christopher R. Gignoux ◽  
...  

AbstractRecent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until about 2,000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for more than one hundred South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu-speakers, approximately 14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa.Data depositionData files are freely available on the Henn Lab website: http://ecoevo.stonybrook.edu/hennlab/data-software/SummaryDistinct, spatially organized ancestries demonstrate fine-scale population structure in southern Africa, implying a more complex history of the KhoeSan than previously thought. Southern KhoeSan ancestry in the Nama and ≠Khomani is shared in a rim around the Kalahari Desert. We hypothesize that there was recent migration of pastoralists from East Africa into southern Africa, independent of the Bantu-expansion, but the spread of pastoralism within southern Africa occurred largely by cultural diffusion.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 599 ◽  
Author(s):  
Morteza Bitaraf Sani ◽  
Javad Zare Harofte ◽  
Ahmad Bitaraf ◽  
Saeid Esmaeilkhanian ◽  
Mohammad Hossein Banabazi ◽  
...  

The development of camel husbandry for good production in a desert climate is very important, thus we need to understand the genetic basis of camels and give attention to genomic analysis. We assessed genome-wide diversity, linkage disequilibrium (LD), effective population size (Ne) and relatedness in 96 dromedaries originating from five different regions of the central desert of Iran using genotyping-by-sequencing (GBS). A total of 14,522 Single Nucleotide Polymorphisms (SNPs) with an average minor allele frequency (MAF) of 0.19 passed quality control and filtering steps. The average observed heterozygosity in the population was estimated at 0.25 ± 0.03. The mean of LD at distances shorter than 40 kb was low (r2 = 0.089 ± 0.234). The camels sampled from the central desert of Iran exhibited higher relatedness than Sudanese and lower than Arabian Peninsula dromedaries. Recent Ne of Iran’s camels was estimated to be 89. Predicted Tajima’s D (1.28) suggested a bottleneck or balancing selection in dromedary camels in the central desert of Iran. A general decrease in effective and census population size poses a threat for Iran’s dromedaries. This report is the first SNP calling report on nearly the chromosome level and a first step towards understanding genomic diversity, population structure and demography in Iranian dromedaries.


Sign in / Sign up

Export Citation Format

Share Document