scholarly journals Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Chen ◽  
Sujuan Yang ◽  
Sara Lovisa ◽  
Catherine G. Ambrose ◽  
Kathleen M. McAndrews ◽  
...  

AbstractType I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.

MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2016 ◽  
Vol 10 (2) ◽  
pp. 12-19
Author(s):  
Sahar S. Karieb ◽  
Mohammed M. Jawad ◽  
Hanady S. Al-Shmgani ◽  
Zahraa H.M. Kadri

Multiple studies have been reported the stimulatory effect of the combinations of nutrients factors on bone formation. One such factor is vitamin K2 which can be associated with bone protective activities. The effect of vitamin K2 alone and in combination with genistein, coumestrol and daidzein on osteoblast differentiation and mineralization were tested. Significantly, vitamin K2 increased bone mineralization in combination with genistein (10-5M), coumestrol (10-7M) and daidzein (10-5M). However, there is no additive effect of this vitamin on alkaline phosphatase (ALP) levels in osteoblasts. By contrast, vitamin K2 enhanced the stimulatory effect of type I collagen and osteocalcin expression. Vitamin K2 alone increased RUNX and OSX expression while there is no synergistic effect with tested compound; this vitamin also did not modulate nuclear factor kappa B ligand (RANKL)/ osteoprotegerin (OPG) ratio expression. These results suggested that vitamin K2 can be more effective factor in the presence of phytoestrogens on the improvement of bone formation after menopause.


2020 ◽  
Vol 318 (4) ◽  
pp. L592-L605
Author(s):  
Milena Dimori ◽  
Melissa E. Heard-Lipsmeyer ◽  
Stephanie D. Byrum ◽  
Samuel G. Mackintosh ◽  
Richard C. Kurten ◽  
...  

Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.


2010 ◽  
Vol 189 (3) ◽  
pp. 511-525 ◽  
Author(s):  
Michael L. Sohaskey ◽  
Yebin Jiang ◽  
Jenny J. Zhao ◽  
Andreas Mohr ◽  
Frank Roemer ◽  
...  

During skeletal development and regeneration, bone-forming osteoblasts respond to high metabolic demand by active expansion of their rough endoplasmic reticulum (rER) and increased synthesis of type I collagen, the predominant bone matrix protein. However, the molecular mechanisms that orchestrate this response are not well understood. We show that insertional mutagenesis of the previously uncharacterized osteopotentia (Opt) gene disrupts osteoblast function and causes catastrophic defects in postnatal skeletal development. Opt encodes a widely expressed rER-localized integral membrane protein containing a conserved SUN (Sad1/Unc-84 homology) domain. Mice lacking Opt develop acute onset skeletal defects that include impaired bone formation and spontaneous fractures. These defects result in part from a cell-autonomous failure of osteoblast maturation and a posttranscriptional decline in type I collagen synthesis, which is concordant with minimal rER expansion. By identifying Opt as a crucial regulator of bone formation in the mouse, our results uncover a novel rER-mediated control point in osteoblast function and implicate human Opt as a candidate gene for brittle bone disorders.


2005 ◽  
Vol 185 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Mei-Fway Iu ◽  
Hiroshi Kaji ◽  
Hideaki Sowa ◽  
Junko Naito ◽  
Toshitsugu Sugimoto ◽  
...  

Central in the pathogenesis of glucocorticoid (GC)-induced osteoporosis is the effects of GC on bone formation. However, the mechanism of GC-inhibited bone formation is not well known. Transforming growth factor (TGF)-β is most abundant in bone matrix compared with other tissues, and we have recently proposed that Smad3, a TGF-β signaling molecule, is important for promoting bone formation. However, no reports have been available about the effects of GC on Smad3 in osteoblasts. In the present study, we investigated whether dexamethasone (Dex), an active GC analog, would affect the expression and activity of Smad3 in mouse osteoblastic MC3T3-E1 and rat osteoblastic UMR-106 cells. Dex significantly suppressed Smad3-stimulated alkaline phosphatase (ALP) activity, although it did not affect TGF-β-inhibited ALP activity in MC3T3-E1 cells. Moreover, pretreatment with Dex suppressed TGF-β-enhanced expression of type I collagen in MC3T3-E1 and UMR-106 cells. In the luciferase assay using p3TP-Lux with a Smad3-specific response element, Dex significantly suppressed the transcriptional activity induced by TGF-β as well as Smad3. However, Dex did not affect the expression of Smad3 in these cells at both mRNA and protein levels. In conclusion, the present study indicates that Dex inhibits ALP activity and type I collagen expression, presumably by suppressing Smad3-induced transcriptional activity but not by modulating Smad3 expression in osteoblastic cells.


1992 ◽  
Vol 263 (4) ◽  
pp. E724-E729 ◽  
Author(s):  
R. T. Turner ◽  
S. N. Kapelner ◽  
T. C. Spelsberg

Total cellular RNA was extracted from bone cells of three different femoral compartments of 2-mo-old rats. The intact femora were first incubated with collagenase to obtain periosteal cells. The bisected periosteum-free diaphyses and metaphyses were then incubated with collagenase to obtain enriched populations of endosteal and cancellous bone cells, respectively. The total cellular RNA from these three tissues was separated by size using agarose gel electrophoresis, transferred to nylon filters, hybridized to 32P-labeled cDNA probes for glyceraldehyde-3-phosphate dehydrogenase (GAP), pre-pro-alpha (I) type I collagen (collagen), osteocalcin (BGP), and alkaline phosphatase (AP), and the cDNA/mRNA hybrids were visualized by radioautography. Bone matrix deposition was measured in each tissue compartment by tetracycline-based dynamic bone histomorphometry. The bone formation and apposition rates were greatest in the periosteum and least in metaphysis. Mean mRNA levels for collagen and BGP were positively correlated with mean bone formation and mineral apposition rates. Interestingly, mean AP mRNA levels were not correlated with indexes of bone formation. These results demonstrate that the steady-state mRNA levels for bone matrix proteins in femora show pronounced site specificity and correlate with the rates of bone matrix deposition.


2018 ◽  
Vol 69 (7) ◽  
pp. 1706-1709
Author(s):  
Nicoleta Dumitru ◽  
Andra Cocolos ◽  
Andra Caragheorgheopol ◽  
Constantin Dumitrache ◽  
Ovidiu Gabriel Bratu ◽  
...  

There is an increased interest and more studies highlight the fact that bone strength depends not only on bone tissue quantity, but also on its quality, which is characterized by the geometry and shape of bones, trabecular bone microarchitecture, mineral content, organic matrix and bone turnover. Fibrillar type I collagen is the major organic component of bone matrix, providing form and a stable template for mineralization. The biomedical importance of collagen as a biomaterial for medical and cosmetic purposes and the improvement of the molecular, cellular biology and analytical technologies, led to increasing interest in establishing the structure of this protein and in setting of the relationships between sequence, structure, and function. Bone collagen crosslinking chemistry and its molecular packing structure are considered to be distinct features. This unique post-translational modifications provide to the fibrillar collagen matrices properties such as tensile strength and viscoelasticity. Understanding the complex structure of bone type I collagen as well as the dynamic nature of bone tissues will help to manage new therapeutic approaches to bone diseases.


2021 ◽  
Vol 10 (14) ◽  
pp. 3141
Author(s):  
Hyerin Jung ◽  
Yeri Alice Rim ◽  
Narae Park ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.


Sign in / Sign up

Export Citation Format

Share Document