scholarly journals Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fabian Grünewald ◽  
Riccardo Alessandri ◽  
Peter C. Kroon ◽  
Luca Monticelli ◽  
Paulo C. T. Souza ◽  
...  

AbstractMolecular dynamics simulations play an increasingly important role in the rational design of (nano)-materials and in the study of biomacromolecules. However, generating input files and realistic starting coordinates for these simulations is a major bottleneck, especially for high throughput protocols and for complex multi-component systems. To eliminate this bottleneck, we present the polyply software suite that provides 1) a multi-scale graph matching algorithm designed to generate parameters quickly and for arbitrarily complex polymeric topologies, and 2) a generic multi-scale random walk protocol capable of setting up complex systems efficiently and independent of the target force-field or model resolution. We benchmark quality and performance of the approach by creating realistic coordinates for polymer melt simulations, single-stranded as well as circular single-stranded DNA. We further demonstrate the power of our approach by setting up a microphase-separated block copolymer system, and by generating a liquid-liquid phase separated system inside a lipid vesicle.

2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Annika Meiners ◽  
Sandra Bäcker ◽  
Inesa Hadrović ◽  
Christian Heid ◽  
Christine Beuck ◽  
...  

AbstractSurvivin’s dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein–protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin’s nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.


2012 ◽  
Vol 9 (73) ◽  
pp. 1767-1773 ◽  
Author(s):  
Tyler Skorczewski ◽  
Angela Cheer ◽  
Peter C. Wainwright

Suction feeding is the most common form of prey capture across aquatic feeding vertebrates and many adaptations that enhance efficiency and performance are expected. Many suction feeders have mechanisms that allow the mouth to form a planar and near-circular opening that is believed to have beneficial hydrodynamic effects. We explore the effects of the flattened and circular mouth opening through computational fluid dynamics simulations that allow comparisons with other mouth profiles. Compared to mouths with lateral notches, we find that the planar mouth opening results in higher flow rates into the mouth and a region of highest flow that is positioned at the centre of the mouth aperture. Planar mouths provide not only for better total fluid flow rates through the mouth but also through the centre of the mouth near where suction feeders position their prey. Circular mouths are shown to provide the quickest capture times for spherical and elliptical prey because they expose the prey item to a large region of high flow. Planar and circular mouths result in higher flow velocities with peak flow located at the centre of the mouth opening and they maximize the capacity of the suction feeders to exert hydrodynamic forces on the prey.


2000 ◽  
Vol 47 (1) ◽  
pp. 47-57 ◽  
Author(s):  
J Mazerski ◽  
I Antonini ◽  
S Martelli

Pyrimidoacridinetriones (PATs) are a new group of highly active antitumor compounds. It seems reasonable to assume that, like for some other acridine derivatives, intercalation into DNA is a necessary, however not a sufficient condition for antitumor activity of these compounds. Rational design of new compounds of this chemotype requires knowledge about the structure of the intercalation complex, as well as about interactions responsible for its stability. Computer simulation techniques such as molecular dynamics (MD) may provide valuable information about these problems. The results of MD simulations performed for three rationally selected PATs are presented in this paper. The compounds differ in the number and position of side chains. Each of the compounds was simulated in two systems: i) in water, and ii) in the intercalation complex with the dodecamer duplex d(GCGCGCGCGCGC)2. The orientation of the side chain in relation to the ring system is determined by the position of its attachment. Orientation of the ring system inside the intercalation cavity depends on the number and position of side chain(s). The conformations of the side chain(s) of all PATs studied in the intercalation complex were found to be very similar to those observed in water.


Author(s):  
Giulia Mancardi ◽  
Matteo Alberghini ◽  
Neus Aguilera-Porta ◽  
Monica Calatayud ◽  
Pietro Asinari ◽  
...  

Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetic described by the Smoluchowski theory. Molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, without having to conduct large scale experiments on living organisms.


2020 ◽  
Author(s):  
Anirban Das ◽  
Anju Yadav ◽  
Mona Gupta ◽  
R Purushotham ◽  
Vishram L. Terse ◽  
...  

AbstractProtein folding can go wrong in vivo and in vitro, with significant consequences for the living cell and the pharmaceutical industry, respectively. Here we propose a general design principle for constructing small peptide-based protein-specific folding modifiers. We construct a ‘xenonucleus’, which is a pre-folded peptide that resembles the folding nucleus of a protein, and demonstrate its activity on the folding of ubiquitin. Using stopped-flow kinetics, NMR spectroscopy, Förster Resonance Energy transfer, single-molecule force measurements, and molecular dynamics simulations, we show that the ubiquitin xenonucleus can act as an effective decoy for the native folding nucleus. It can make the refolding faster by 33 ± 5% at 3 M GdnHCl. In principle, our approach provides a general method for constructing specific, genetically encodable, folding modifiers for any protein which has a well-defined contiguous folding nucleus.


2021 ◽  
Author(s):  
Tom Pace ◽  
Hadi Rahmaninejad ◽  
Bin Sun ◽  
Peter Kekenes-Huskey

Silica-based materials including zeolites are commonly used for wide ranging applications including separations and catalysis.<br>Substrate transport rates in these materials often significantly influence the efficiency of such applications.<br>Two factors that contribute to transport rates include<br>1) the porosity of the silicate matrix and<br>2) non-bonding interactions between the diffusing species and the silicate surface.<br>Here, we utilize computer simulation to resolve the relative contribution of these factors to effective methane transport rates in a silicate channel.<br>Specifically, we develop a `homogenized' model of methane transport valid at micron and longer length scales that incorporates atomistic-scale kinetic information.<br>The atomistic-scale data are obtained from extensive molecular dynamics simulations that yield local diffusion coefficients and potentials of mean force.<br>With this model, we demonstrate how nuances in silicate hydration and silica/methane interactions impact 'macroscale' methane diffusion rates in bulk silicate materials.<br>This hybrid homogenization/molecular dynamics approach will be of general use for describing small molecule transport in materials with detailed molecular interactions.<br><br>


2019 ◽  
Author(s):  
Ian H. Kimball ◽  
Phuong T. Nguyen ◽  
Baldomero M. Olivera ◽  
Jon T. Sack ◽  
Vladimir Yarov-Yarovoy

AbstractThe voltage-gated sodium (Nav) channel subtype Nav1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between μ-conotoxin KIIIA (KIIIA) and the human Nav1.7 channel (hNav1.7). We developed a structural model of hNav1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNav1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNav1.7 model and the recently published cryo-EM structure of KIIIA-hNav1.2 revealed key similarities and differences between channel subtypes with potential implications for the molecular mechanism of toxin block. Our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations will be useful for engineering molecular probes to study Nav channel function, and for rational design of novel biologics targeting specific Nav channels.


Sign in / Sign up

Export Citation Format

Share Document