scholarly journals Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Cecilia Rodriguez-Furlan ◽  
Roya Campos ◽  
Jessica N. Toth ◽  
Jaimie M. Van Norman

AbstractIn plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem. In the endodermis, KOIN polarity is opposite to IRK, a receptor that represses endodermal cell divisions. Their contra-polar localization facilitates dissection of polarity mechanisms and the links between polarity and function. We find that IRK and KOIN are recognized, sorted, and secreted through distinct pathways. IRK extracellular domains determine its polarity and partially rescue the mutant phenotype, whereas KOIN’s extracellular domains are insufficient for polar sorting and function. Endodermal expression of an IRK/KOIN chimera generates non-cell-autonomous misregulation of root cell divisions that impacts patterning. Altogether, we reveal two contrasting mechanisms determining these receptors’ polarity and link their polarity to cell divisions in root tissue patterning.

2020 ◽  
Vol 21 (7) ◽  
pp. 2515 ◽  
Author(s):  
Simona Fecarotta ◽  
Antonietta Tarallo ◽  
Carla Damiano ◽  
Nadia Minopoli ◽  
Giancarlo Parenti

The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.


2021 ◽  
Author(s):  
Nabila El Arbi ◽  
Ann-Kathrin Schürholz ◽  
Alexei Schiffner ◽  
Inés Hidalgo Prados ◽  
Friedrich Böhme ◽  
...  

SummaryA key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a miRNA gradient controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that a functional miRNA gradient requires an opposing gradient of ARGONAUTE10, which sequesters miRNAs to protect HD-ZIP III transcripts from degradation. In the absence of ARGONAUTE10, xylem precursor cells undergo periclinal divisions that lead to continuous strands of differentiated xylem elements at ectopic positions. Notably, periclinal daughter cells maintain xylem identity even when they are located outside of the xylem axis, resulting in disrupted tissue boundaries. We further demonstrate that ARGONAUTE10 and HD-ZIP IIIs buffer cytokinin signalling to control formative cell divisions, providing a framework for integration of phytohormone and miRNA-mediated patterning.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


2014 ◽  
Vol 17 (1) ◽  
pp. 45-71
Author(s):  
Geo Siegwart

The main objective is an interpretation of the island parody, in particular a logical reconstruction of the parodying argument that stays close to the text. The parodied reasoning is identified as the proof in the second chapter of the Proslogion, more specifically, this proof as it is represented by Gaunilo in the first chapter of his Liber pro insipiente. The second task is a detailed comparison between parodied and parodying argument as well as an account of their common structure. The third objective is a tentative characterization of the nature and function of parodies of arguments. It seems that parodying does not add new pertinent points of view to the usual criticism of an argument.


Sign in / Sign up

Export Citation Format

Share Document