scholarly journals The Taxus genome provides insights into paclitaxel biosynthesis

Nature Plants ◽  
2021 ◽  
Author(s):  
Xingyao Xiong ◽  
Junbo Gou ◽  
Qinggang Liao ◽  
Yanlin Li ◽  
Qian Zhou ◽  
...  

AbstractThe ancient gymnosperm genus Taxus is the exclusive source of the anticancer drug paclitaxel, yet no reference genome sequences are available for comprehensively elucidating the paclitaxel biosynthesis pathway. We have completed a chromosome-level genome of Taxus chinensis var. mairei with a total length of 10.23 gigabases. Taxus shared an ancestral whole-genome duplication with the coniferophyte lineage and underwent distinct transposon evolution. We discovered a unique physical and functional grouping of CYP725As (cytochrome P450) in the Taxus genome for paclitaxel biosynthesis. We also identified a gene cluster for taxadiene biosynthesis, which was formed mainly by gene duplications. This study will facilitate the elucidation of paclitaxel biosynthesis and unleash the biotechnological potential of Taxus.

2021 ◽  
Author(s):  
Xingyao Xiong ◽  
Junbo Gou ◽  
Qinggang Liao ◽  
Yanlin Li ◽  
Qian Zhou ◽  
...  

AbstractThe ancient gymnosperm genus Taxus is the exclusive source of the anticancer drug paclitaxel, yet no reference genome sequences are available for comprehensively elucidating the paclitaxel biosynthesis pathway. We have completed a chromosome-level genome of Taxus chinensis var. mairei with a total length of 10.23 Gb. Taxus shared an ancestral whole-genome duplication with the coniferophyte lineage and underwent distinct transposon evolution. We discovered a unique physical and functional grouping of CYP725As (cytochrome P450) in the Taxus genome for paclitaxel biosynthesis. We also identified a gene cluster in the taxadiene biosynthesis, which was mainly formed by gene duplications. This study will facilitate the elucidation of paclitaxel biosynthesis and unleash the biotechnological potential of Taxus.One Sentence SummaryA chromosome-level genome assembly of Taxus chinensis var. mairei uncovers its unique genome evolution process and genetic architectures for the paclitaxel biosynthesis pathway.


GigaScience ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Tiantian Zhao ◽  
Wenxu Ma ◽  
Zhen Yang ◽  
Lisong Liang ◽  
Xin Chen ◽  
...  

Abstract Background Corylus heterophylla Fisch. is a species of the Betulaceae family native to China. As an economically and ecologically important nut tree, C. heterophylla can survive in extremely low temperatures (–30 to –40 °C). To deepen our knowledge of the Betulaceae species and facilitate the use of C. heterophylla for breeding and its genetic improvement, we have sequenced the whole genome of C. heterophylla. Findings Based on >64.99 Gb (∼175.30×) of Nanopore long reads, we assembled a 370.75-Mb C. heterophylla genome with contig N50 and scaffold N50 sizes of 2.07 and 31.33  Mb, respectively, accounting for 99.23% of the estimated genome size (373.61 Mb). Furthermore, 361.90 Mb contigs were anchored to 11 chromosomes using Hi-C link data, representing 97.61% of the assembled genome sequences. Transcriptomes representing 4 different tissues were sequenced to assist protein-coding gene prediction. A total of 27,591 protein-coding genes were identified, of which 92.02% (25,389) were functionally annotated. The phylogenetic analysis showed that C. heterophylla is close to Ostrya japonica, and they diverged from their common ancestor ∼52.79 million years ago. Conclusions We generated a high-quality chromosome-level genome of C. heterophylla. This genome resource will promote research on the molecular mechanisms of how the hazelnut responds to environmental stresses and serves as an important resource for genome-assisted improvement in cold and drought resistance of the Corylus genus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Rai ◽  
Hideki Hirakawa ◽  
Ryo Nakabayashi ◽  
Shinji Kikuchi ◽  
Koki Hayashi ◽  
...  

AbstractPlant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher Alan Smith

AbstractThe basidiomycete fungus Lentinula novae-zelandiae is endemic to New Zealand and is a sister taxon to Lentinula edodes, the second most cultivated mushroom in the world. To explore the biology of this organism, a high-quality chromosome level reference genome of L. novae-zelandiae was produced. Macrosyntenic comparisons between the genome assembly of L. novae-zelandiae, L. edodes and a set of three genome assemblies of diverse species from the Agaricomycota reveal a high degree of macrosyntenic restructuring within L. edodes consistent with signal of domestication. These results show L. edodes has undergone significant genomic change during the course of its evolutionary history, likely a result of its cultivation and domestication over the last 1000 years.


Author(s):  
Conghui Liu ◽  
Yuwei Ren ◽  
Zaiyuan Li ◽  
Qi Hu ◽  
Lijuan Yin ◽  
...  

AbstractWhole-genome duplication (WGD) has been observed across a wide variety of eukaryotic groups, contributing to evolutionary diversity and environmental adaptability. Mollusks are the second largest group of animals, and are among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition, and no comprehensive research on WGD has been reported in this group. To explore WGD and the A-T transition in Mollusca, we assembled a chromosome-level reference genome for the giant African snail Achatina immaculata, a global invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to the other available mollusk genomes. The chromosome-level macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested the occurrence of a WGD event shared by A. immaculata and A. fulica. The estimated timing of this WGD event (∼70 MYA) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD reported herein may have been a common event shared by all Sigmurethra-Orthurethra species and could have conferred ecological adaptability and genomic plasticity allowing the survival of the K-T extinction. Based on macrosynteny, we deduced an ancestral karyotype containing 8 conserved clusters for the Gastropoda-Bivalvia lineage. To reveal the mechanism of WGD in shaping adaptability to terrestrial ecosystems, we investigated gene families related to the respiration, aestivation and immune defense of giant African snails. Several mucus-related gene families expanded early in the Stylommatophora lineage, functioning in water retention, immune defense and wound healing. The hemocyanins, PCK and FBP families were doubled and retained after WGD, enhancing the capacity for gas exchange and glucose homeostasis in aestivation. After the WGD, zinc metalloproteinase genes were highly tandemly duplicated to protect tissue against ROS damage. This evidence collectively suggests that although the WGD may not have been the direct driver of the A-T transition, it provided an important legacy for the terrestrial adaptation of the giant African snail.


Author(s):  
Marco Alexandre Guerreiro ◽  
Steven Ahrendt ◽  
Jasmyn Pangilinan ◽  
Cindy Chen ◽  
Mi Yan ◽  
...  

Abstract The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. Additionally, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.


2015 ◽  
Author(s):  
Farzana Rahman ◽  
Mehedi Hassan ◽  
Alona Kryshchenko ◽  
Inna Dubchak ◽  
Tatiana V Tatarinova ◽  
...  

In the last decade a number of algorithms and associated software were developed to align next generation sequencing (NGS) reads to relevant reference genomes. The results of these programs may vary significantly, especially when the NGS reads are contain mutations not found in the reference genome. Yet there is no standard way to compare these programs and assess their biological relevance. We propose a benchmark to assess accuracy of the short reads mapping based on the pre-computed global alignment of closely related genome sequences. In this paper we outline the method and also present a short report of an experiment performed on five popular alignment tools .


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


Sign in / Sign up

Export Citation Format

Share Document