scholarly journals NAD+ augmentation with nicotinamide riboside improves lymphoid potential of Atm−/− and old mice HSCs

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Le Zong ◽  
Mayuri Tanaka-Yano ◽  
Bongsoo Park ◽  
Hagai Yanai ◽  
Ferda T. Turhan ◽  
...  

AbstractNAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3844-3844
Author(s):  
Aysegul Verim

Abstract Abstract 3844 Hematopoietic stem cells (HSCS) have the ability to self-renew and give rise to more HSCs or differentiate to produce all blood lineages. Due to their role in sustaining the hematopoietic system throughout life, it was thought that HSCs might be protected from the effects of aging that have an impact on differentiated cells. However, we and others found that aged HSCs were approximately three fold less active than young HSCs in competitive repopulating assays (Chambers et al. 2007; Plos Biology). Paradoxically, there was an expansion in the HSC pool and the population was more homogenous for stem cell marker expression (Sca-1 and c-Kit). Besides the diminished regenerative capacity of the HSC, there was also a skewing of lineage potential from lymphopoiesis toward myelopoiesis with age (Sudo et al. 2000; J Exp Med). While the effects of aging on HSC have been characterized, limited focus has been spent on what role the surrounding bone marrow environment (stem cell niche) plays in pathways dysregulated with age in the HSC. In order to understand age-related changes in the microenvironment, we performed a cytokine protein array in young versus old mice. From this study, we found an increase in two pro-inflammatory cytokines Mig and Rantes in aged mice, indicating the presence of an inflammatory microenvironment in aged mice. We also found that Rantes expression increases with age in the bone and lineage positive cells of the bone marrow. With enforced expression of Rantes, we saw a significant change in the differentiated progeny of HSCs 16 weeks after transplantation. There were significantly fewer (p<0.05) T cells and more myeloid cells in the Rantes over-expressing group. We also analyzed bone marrow for HSC and progenitor populations after 18 weeks of transplantation and saw significantly more LT-HSCs in the Rantes over-expressing group. We also tested effects of Mig and Rantes on LT-HSCs by ex-vivo treatment followed by functional transplantion assay. We saw the same lineage skewing phenotype after 16 weeks of transplantation (more myeloid cells and significantly less lymphoid cells with Rantes treatment), consistent with the over-expression study. When we transplanted old or young bone marrow cells into either old or young mice and compared either old-into-old with old-into-young, or young-into-young with young-into-old transplants, we observed a significant decrease in T cells and an increase in myleoid cells 16-weeks post-transplant when bone marrow cells were transplanted into old mice. The heterochronic transplantation results demonstrated that an old environment favors myeloid differentiation against T cell differentation. Since enforced expression of Rantes had the same lineage skewing phenotype with those transplants, one possible explanation would be that enforced expression of Rantes or ex-vivo treatment mimicks the old environment and leads to myeloid skewing phenotype. We are now testing Rantes knock-out stem cells for their ability to reconstitute blood. We are expecting to see a better engraftment and more T cells in the peripheral blood. Collectively, Rantes is a key inflammatory cytokine that contributes to myeloid skewing and functional deficits in HSCs of aged mice. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 512-512
Author(s):  
Isabel Beerman

Abstract During aging, alterations of hematopoietic stem cells are associated with functional decline of the blood system. Caloric restriction (CR) interventions have been reported to improve adult stem cells in other tissue types during aging so we sought to evaluate the effects of CR on the aged HSC compartment. We find significant epigenetic alterations in HSCs isolated from aged mice after life-long CR compared to ad libitum fed aged mice. We further evaluated the epigenetic landscapes and functional potential of aged HSCs shortly after allowing life-long CR mice access to ad libitum food. We uncover epigenetic modification associated with functional alterations of the HSCs, defining potential mechanisms by which restrictions in food consumption affect the aging hematopoietic compartment.


1987 ◽  
Vol 5 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Vincent S. Gallicchio ◽  
Thomas D. Watts ◽  
George P. Casale ◽  
Philip M. Bartholomew

2012 ◽  
Vol 210 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Florian H. Heidel ◽  
Lars Bullinger ◽  
Patricia Arreba-Tutusaus ◽  
Zhu Wang ◽  
Julia Gaebel ◽  
...  

A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1−/− HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 34-34
Author(s):  
Xiaoling Zhang ◽  
June Li ◽  
Daniel P. Sejas ◽  
Qishen Pang

Abstract Hematopoietic cells are often exposed to transient hypoxia as they develop and migrate between blood and tissues. We sought to test the role of continuous cycles of hypoxia and reoxygenation in the pathogenesis of bone marrow failure in Fanconi anemia (FA). We isolated Lin− BM cells from wild-type (WT) and Fancc−/− mice, and subjected them to two cycles of hypoxic (1% O2) then reoxygenation (20% O2). Expansion of Fancc−/− Lin− BM cells was significantly decreased in response to the oxidative stress of reoxygenation, as compared with WT Lin− BM cells (1.3 vs. 4.9-fold by day 6, respectively). This inhibition was attributable to a marked decrease of Fancc−/− progenitor (Lin− ScaI− c-kit+) cells, as well as a slower expansion of Fancc−/− stem (Lin− ScaI+ c-kit+) cells than the WT stem cells following reoxygenation. Fancc−/− Lin− BM cells transduced with FANCC retroviruses exhibited a significant growth advantage to untransduced cells, particularly in hypoxia and reoxygenation conditions where the predominance of FANCC/GFP+ progenitors was observed in both the short-term liquid culture and clonogenic assays. There was no evidence of increased apoptotic death in these reoxygenated Fancc−/− BM progenitor and stem cells compared to their WT counterparts, as assessed by a flow cytometric method for caspase 3 activation (early apoptosis). Interestingly, evaluation of the apoptotic profile and cell cycle of stroma-supported long-term BM culture (LTBMC; two weeks after second reoxygenation) revealed that reoxygenated Fancc−/− LTBMC cells had reduced apoptosis compared to reoxygenated short-term culture. However, a vast majority (70.6%) of reoxygenated Fancc−/− LTBMC cells was residing in the G0 + G1 phases compared with 55.8% in WT LTBMC cells. Fancc−/− LTBMC cells stained intensely for SA-b-galactosidase activity, a biomarker for senescence; this was associated with increased expression of senescence-associated proteins p53 and p21CIP1/WAF1 and to a lesser extent, p16INK4A. Moreover, reoxygenation-induced phosphorylation of p53ser15 was dependent on the ATM kinase but not ATR, as inhibition of ATM signaling by the kinase inhibitor 2-aminopurine or siRNA knockdown of ATM decreased p53ser15 phosphorylation and reduced cell senescence. Taken together, these results suggest that reoxygenation induces premature senescence in Fancc−/− BM hematopoietic progenitor and stem cells by signaling through the ATM to p53, upregulating p21 and causing senescent cell cycle arrest. In addition, reoxygenation-induced premature senescence may be a novel mechanism underlying hematopoietic stem cell depletion and BM failure in FA. <B style=%


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3220-3220
Author(s):  
Matthew J. Greenwood ◽  
Peter M. Lansdorp

Abstract The mechanisms underlying the aging of the hematopoietic stem cell (HSC) compartment remain poorly understood. The ATP-binding cassette cell surface transport protein, ABCG2, has been identified as the transporter responsible for Hoechst 33342 (Hst) efflux in primitive stem cells and its expression is associated with the side population (SP) phenotype in both murine and human bone marrow (BM). ABCG2 expression and Hst efflux activity is highest in those cells with the greatest repopulating potential and is progressively downregulated during differentiation. The substrate profile of ABCG2, which includes a number of antineoplastic drugs, protoporphyrin IX and the chlorophyll breakdown product pheophorbide, suggest that ABCG2 transporters may function to protect stem cells from cytotoxic insults, a function which may be of great importance in stem cell maintenance. Amongst laboratory mice, the C57BL/6 strain is the longest lived and appears to accumulate HSC’s with age as assessed by both phenotype and colony forming assays. While the phenotypic features of the SP profile have been well characterized in both humans and young mice, little is known of the Hst efflux dynamics or phenotype of the SP profile in old and very old C57BL/6 mice. In order to further characterize the SP profile in old mice, whole BM was extracted from the femurs, tibiae, pelvis and thoracolumbar vertebral bodies of young (9–13 week) and old (95–108 week) C57BL/6 (Ly5.1) mice. Cells were stained with 5μg/ml Hst followed by staining with a combination of CD45.1 FITC, Sca1 PE, c-kit APC, CD34 FITC, biotinylated CD34 and lineage markers and strep PE-Texas Red. In addition, serial sampling of Hst incubated cells was performed to assess Hst efflux activity at 20 mins incubation through to 100mins. Six-color flow analysis was performed on a FACS Vantage™ (BD) cytometer and data analyzed using FlowJo™ software. Results show a marked increase in cells with an SP phenotype in old vs young mice (mean±SD 1.85%±0.88 vs 0.15%±0.09) which were more highly enriched for CD34-Sca1+ckit+ (22.2%±8.65 vs 8.89%±6.7) cells. Subdividing the SP profile into four regions (R1 to R4) from highest to lowest Hst efflux activity revealed that in old mice, SP cells with the highest Hst efflux activity were almost exclusively of a CD34-Sca1+ckit+ phenotype (82.3%±14.0 vs 11.5%±7.8), with a decreasing proportion of these cells represented throughout the remaining SP tail, though a significant proportion of cells within R4 remain CD34-Sca1+ckit+ (15.3%±7.83 vs 4.19±3.01). Similar patterns have been observed in both whole and lineage depleted BM. In addition, BM cells from old C57BL/6 mice show prolonged Hst efflux activity with an increase in cells in the SP gate at 100 mins (1.51%±0.50 vs 0.10%±0.06). We conclude that in old C57Bl/6 mice, cells accumulate which have the capacity to efflux Hst in agreement with previous reports of an increase in HSC number with age in this mouse strain.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2846-2846
Author(s):  
M. Kozik ◽  
J. Banks ◽  
L. Fanning ◽  
M. Finney ◽  
Y. Huang ◽  
...  

Abstract Cytokine-based expansion of umbilical cord blood (UCB) in vitro prior to infusion has been pursued in an attempt to overcome the limited cellular content of a single UCB unit. Thus far, these attempts have not shown improvement in kinetics of donor-derived hematopoietic recovery. Our studies have incorporated UCB expanded over a feeder-layer of human mesenchymal stem cells (huMSC), known to inhibit the differentiation of hematopoietic stem cells (HSC) observed in expansion with cytokines alone. Expansion conditions included: UCB expanded over a huMSC monolayer with the addition of cytokines (IL-3, IL-6, G-CSF, SCF, FLT-3L, EPO) and UCB expanded in the same cytokines alone. Day 12 culture readouts included: viable cell counts, 4-color flow analysis, and rates of human engraftment in NOD/SCID mice. In the current study the fold expansion was 6.4 fold in the huMSC + cytokines condition and 7 fold in the cytokines alone condition. Flow cytometry surface marker analysis proportions (absolute numbers) were notable for higher proportions and numbers of early HSC expressing CD133 in cultures incorporating huMSC stromal layer: Unexpanded MSC+ cytokines Cytokines CD34 0.68 (.068M) 0.74 (3.63M) 1.94 (5.39M) CD133 5.69 (.569M) 2.56 (12.54M) 0.74 (2.06M) CD3 49.6 (4.96M) 2.2 (10.78M) 0.42 (1.17M) CD56 17.4 (1.74M) 2.71 (13.28M) 1.06 (2.95M) CD69 0.80 (7.28M) 7.28 (35.67M) 24.4 (67.8M) UCB graft T and NK populations were maintained in huMSC culture conditions and the observed difference in CD69 expression supports the hypothesis that huMSC may have an inhibitory effect on T cell activation during UCB ex vivo expansion. To assess the human engraftment potential of the cultures, cells from each culture condition were injected by tail vein into NOD/SCID mice (no CD34 selection was performed). Mice receiving unexpanded UCB received 10M mononuclear cells each. Mice receiving culture expanded cells received cell doses in proportion to the fold expansion over the number of cells at the initiation of the cultures. Engraftment was assessed by the percentage of human CD45+ (≥0.4%) cells found within the bone marrow of mice at seven weeks post infusion. Mice were injected as follows: 7 mice with unexpanded UCB (2 of which died within a month of transplant), 7 mice with UCB expanded in huMSC + cytokines, and 3 mice with UCB expanded in cytokines alone. Flow analysis of mouse bone marrow cells revealed average CD45+ percentages of 1.79% for mice injected with unexpanded UCB, 2.66% for mice injected with cytokine alone cells, and 5.94% for mice injected with huMSC + cytokine cells. Human cell subset analysis was performed for CD3, CD19, and CD56 content. The percentages of gated CD45+ co-expressing CD3+ were 10.3% in the unexpanded UCB, 16.6% in the cytokine alone condition and 10.4% in the huMSC + cytokine condition. Cells co-expressing CD19+ were 7.86% in the unexpanded UCB, 8.31% in the huMSC + cytokine condition and dropped to 1.43% in the cytokine alone condition. Gated CD45+ cells co-expressing CD56+ were 16.4% in the unexpanded UCB, 8.8% in the huMSC + cytokines condition, and dropped to 2.6% in the cytokines alone condition. In conclusion, UCB expanded short-term in cytokines demonstrates maintenance of earlier HSC phenotype and improved human engraftment in NOD/SCID in cultures incorporating a huMSC monolayer platform.


Sign in / Sign up

Export Citation Format

Share Document