scholarly journals Defect detection in atomic-resolution images via unsupervised learning with translational invariance

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yueming Guo ◽  
Sergei V. Kalinin ◽  
Hui Cai ◽  
Kai Xiao ◽  
Sergiy Krylyuk ◽  
...  

AbstractCrystallographic defects can now be routinely imaged at atomic resolution with aberration-corrected scanning transmission electron microscopy (STEM) at high speed, with the potential for vast volumes of data to be acquired in relatively short times or through autonomous experiments that can continue over very long periods. Automatic detection and classification of defects in the STEM images are needed in order to handle the data in an efficient way. However, like many other tasks related to object detection and identification in artificial intelligence, it is challenging to detect and identify defects from STEM images. Furthermore, it is difficult to deal with crystal structures that have many atoms and low symmetries. Previous methods used for defect detection and classification were based on supervised learning, which requires human-labeled data. In this work, we develop an approach for defect detection with unsupervised machine learning based on a one-class support vector machine (OCSVM). We introduce two schemes of image segmentation and data preprocessing, both of which involve taking the Patterson function of each segment as inputs. We demonstrate that this method can be applied to various defects, such as point and line defects in 2D materials and twin boundaries in 3D nanocrystals.

2008 ◽  
Vol 14 (S2) ◽  
pp. 436-437 ◽  
Author(s):  
G Yang ◽  
Y Zhao ◽  
K Sader ◽  
A Bleloch ◽  
RF Klie

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiahan Sang ◽  
Andrew R. Lupini ◽  
Jilai Ding ◽  
Sergei V. Kalinin ◽  
Stephen Jesse ◽  
...  

Abstract Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.


1999 ◽  
Vol 5 (S2) ◽  
pp. 770-771
Author(s):  
Manabu Ishimaru ◽  
Robert M. Dickerson ◽  
Kurt E. Sickafus

As the size of Si integrated circuit structures is continually reduced, interest in semiconductor-oninsulator (SOI) structures has heightened. SOI structures have already been developed for Si using oxygen ion implantation. However, the application of Si devices is limited due to the physical properties of Si. As an alternative to Si, SiC is a potentially important semiconductor for high-power, high-speed, and high-temperature electronic devices. Therefore, this material is a candidate for expanding the capabilities of Si-based technology. In this study, we performed oxygen ion implantation into bulk SiC to produce SiC-on-insulator structures. We examined the microstructures and compositional distributions in implanted specimens using transmission electron microscopy and a scanning transmission electron microscope equipped with an energy-dispersive X-ray spectrometer (STEM-EDX).Figures 1(a) and 2(a) show bright-field images of 6H-SiC implanted with 180 keV oxygen ions at 650 °C to fluences of 7xl017 and 1.4xl018 cm−2, respectively. Three regions with distinct image contrast are apparent in Figs. 1(a) and 2(a), as indicated by A, B, and C.


Sign in / Sign up

Export Citation Format

Share Document