scholarly journals Ischemic tolerance and cardiac repair in the spiny mouse (Acomys)

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Tim Koopmans ◽  
Henriette van Beijnum ◽  
Elke F. Roovers ◽  
Antonio Tomasso ◽  
Divyanshu Malhotra ◽  
...  

AbstractIschemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.

2021 ◽  
Author(s):  
Tim Koopmans ◽  
Henriette van Beijnum ◽  
Elke F Roovers ◽  
Divyanshu Malhotra ◽  
Antonio Tomasso ◽  
...  

Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, necessitating regenerative therapies to restore heart function. Current models of heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we overcome those restrictions by introducing the African spiny mouse (Acomys spp.), a murid rodent that has recently been found to exhibit bona fide regeneration of the back skin and ear pinna. We show that spiny mice exhibit tolerance to myocardial infarction through superior survivability, improved ventricular conduction, smaller scar size, and near-absence of cardiac remodeling. Critically, spiny mice display increased vascularization and cardiomyocyte expansion, with an associated improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.


2019 ◽  
Vol 6 (1) ◽  
pp. 5 ◽  
Author(s):  
Adriana Rodriguez ◽  
Viravuth Yin

Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.


2005 ◽  
Vol 289 (2) ◽  
pp. F273-F279 ◽  
Author(s):  
Hayley Dickinson ◽  
David W. Walker ◽  
Luise Cullen-McEwen ◽  
E. Marelyn Wintour ◽  
Karen Moritz

The spiny mouse is relatively mature at birth. We hypothesized that like other organs, the kidney may be more developed in the spiny mouse at birth, than in other rodents. If nephrogenesis is complete before birth, the spiny mouse may provide an excellent model with which to study the effects of an altered intrauterine environment on renal development. Due to its desert adaptation, the spiny mouse may have a reduced cortex-to-medulla ratio but an equivalent total nephron number to the C57/BL mouse. Kidneys were collected from fetal and neonatal spiny mice and sectioned for gross examination of metanephric development. Kidneys were collected from adult spiny mice (10 wk of age), and glomerular number, volume, and cortex-to-medulla ratios were determined using unbiased stereology. Nephrogenesis is complete in spiny mouse kidneys before birth. Metanephrogenesis begins at ∼ day 18, and by day 38 of a 40-day gestation, the nephrogenic zone is no longer present. Spiny mice have a significantly ( P < 0.001) lower total nephron number compared with C57/BL mice, although the total glomerular volume is similar. The cortex-to-medulla ratio of the spiny mouse is significantly ( P < 0.01) smaller. The spiny mouse is the first rodent species shown to complete nephrogenesis before birth. This makes it an attractive candidate for the study of fetal and neonatal kidney development and function. The reduced total nephron number and cortex-to-medulla ratio in the spiny mouse may contribute to its ability to highly concentrate its urine under stressful conditions (i.e., dehydration).


2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Yosua Yan Kristian ◽  
Wiji Lestari

Background: Heart disease is one of the leading causes of death in Indonesia. Nutritional management plays an important role in overcoming heart disease, both as prevention and treatment. Carnitine plays a role in fat metabolism and can reduce the formation of thrombosis, resulting in improved heart function and quality of life of patients.Objectives: This study is aimed to identify the effect of carnitine in patients with heart failure.Methods: Existing research findings and articles are selected based on inclusion and exclusion criteria in three databases, namely PubMed, Cochrane and Wiley. The outcome were functional capacity and heart function.Results: One meta-analysis that address with the clinical questions was obtained, and based on that article, giving carnitine to patients with heart failure has effects on increasing functional capacity, heart function, BNP serum and NT-proBNP levels. However, no effects found on mortality. Furthermore, no significant side effects on carnitine was found.Conclusions: Carnitine supplementation at a dose of 1 up to 6 g/day has a positive impact on functional capacity, heart function, BNP serum and NT-proBNP levels in patients with heart failure, alongside with minimal side effects.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ienglam Lei ◽  
Shuo Tian ◽  
Wenbin Gao ◽  
Liu Liu ◽  
Yijing Guo ◽  
...  

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Chen-Leng Cai ◽  
Nishat Sultana ◽  
Lu Zhang ◽  
Jianyun Yan ◽  
Jiqiu Chen ◽  
...  

Identifying a bona fide population of cardiac stem cells (CSCs) is a critical step for developing cell-based therapies for heart failure patients. For more than a decade, c-kit, a receptor tyrosine kinase expressed in certain types of hematopoietic stem cells, has been recognized as a marker of resident CSCs in mammals. It was shown that c-kit + cells are multipotent, with differentiation potential to become cardiomyocytes, endothelial, and smooth muscle cells in vitro and after cardiac injury. Here, we provide new insights into the nature of cardiac resident c-kit + cells. By targeting the c-kit locus with several reporter genes in mice, we unexpectedly found that c-kit + cells rarely co-localizes with cardiac progenitor marker Nkx2.5 or myocardial marker cTnT. Instead, c-kit labels an endocardial population from embryonic stage to adulthood. After acute cardiac injury, the c-kit + cells still retain their endothelial identity and do not become cardiomyocytes. Our study supports the notion that cardiac c-kit + cells are in fact endothelial cells and not CSCs. This finding suggests an urgent need to re-evaluate the mechanisms by which c-kit + cells contribute to heart repair or regeneration given their endothelial identity.


2019 ◽  
Author(s):  
Ienglam Lei ◽  
Shuo Tian ◽  
Wenbin Gao ◽  
Liu Liu ◽  
Yijing Guo ◽  
...  

AbstractMyocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA significantly improved heart function in I/R rats by administration of sodium octanoate (8C). Mechanistically, 8C prevented I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes HO1, NQO1 and SOD2 and inhibited cardiomyocyte apoptosis. Furthermore, we identified that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a. Therefore, our results demonstrate that 8C dramatically improves cardiac function through metabolic acetyl-CoA-mediated histone acetylation. This study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a in stimulating histone acetylation and anti-oxidative stress gene expression to combat heart injury.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2394-2394
Author(s):  
Shaohai Fang ◽  
Yang Xiao ◽  
Jia Li ◽  
Tingting Li ◽  
Hongxiang Zeng ◽  
...  

Abstract Background: Clonal hematopoiesis of indeterminate potential (CHIP) is often observed during aging[1]. CHIP is characterized by a clonal expansion of subset blood-cell clones without other hematological abnormalities. Recent studies reported a strong connection between CHIP and cardiovascular disease (CVD). Individuals with mutations in epigenetic regulators (e.g., DNMT3A, TET2, ASXL1 and JAK2) have a higher risk for CVD[2]. In vivo studies using mouse models confirmed that Tet2-deficient HSPCs exhibited clonal expansion. Furthermore, mice transferred with Tet2-deficient HSPCs showed increased risk of atherosclerosis and worse outcome after permanent left anterior descending artery (LAD) ligation induced myocardial infarction (MI)[3,4]. Macrophages were found to be one of the most affected cell types in Tet2 deficient hematopoietic system associated with increased CVD risk[3,4]. Tet2 deficiency in macrophages is known to cause aberrant innate immune response[5]. Tet2 knockout (KO) macrophages provide a protective microenvironment to prevent melanoma progression[6], suggesting the pivotal role of Tet2 in regulating macrophage function in different context. In this study, we aim to dissect the molecular mechanism on how Tet2 deficiency disrupts normal macrophage function during heart repair. Methods: We crossed Tet2f/f mice with lysMCre mice to yield macrophage specific Tet2 deficient mice (Tet2f/f-lysMCre). We performed LAD ligation in Tet2f/f-lysMCre mice to induce MI. Age and gender matched lysMCre mice were used as controls. Cardiac function was monitored by echocardiogram every week after MI for 4 weeks. Then we sacrificed mice and performed histological analysis to evaluate heart damage and repairs in lysMCre and Tet2f/f-lysMCre mice. During the course of the experiments, we collected peripheral blood and bone marrows to examine the impact of Tet2 loss on macrophages in response to heart damage and repair. In parallel, we also collected heart tissue from lysMCre and Tet2f/f-lysMCre mice at 1 and 4 weeks after LAD ligation followed by single-cell RNA-seq analysis to further dissect the underlying molecular mechanism. Results: Prior to MI, no significant difference in heart function and macrophage numbers were observed between lysMCre and Tet2f/f-lysMCre mice at the age of 6-8 weeks old. Upon LAD-induced MI, we observed worse heart function in Tet2f/f-lysMCre mice compared to lysMCre mice. Tet2f/f-lysMCre mice showed ~40% reduction in ejection fraction and ~50% decrease in fraction shortening compared to lysMCre mice (n = 15). Further histological analysis revealed >2-fold increase in scar areas and infarcted areas in Tet2f/f-lysMCre compared to lysMCre mice. Single cell analysis confirmed a substantial increase of the fibroblast population in Tet2f/f-lysMCre mice upon LAD ligation. Furthermore, we also observed altered expression of a large fraction of genes related to macrophage activation and tissue repair capability, suggesting that Tet2 plays important roles in regulating macrophages function within damaged heart tissues. Further epigenomic analysis on sorted cardiac-specific macrophages is anticipated provide more valuable mechanistic information. Conclusion: Taken together, our data suggest that Tet2 deficient macrophages play an important role during heart damage and repair. Inactivation mutations of TET2 detected in CHIP patients might lead to impaired macrophage function during heart damage and therefore increase the CVD risk. References 1. Jaiswal, S., Fontanillas, P., Flannick, J. et al. (2014). N Engl J Med 371, 2488-2498. 2. Jaiswal, S., Natarajan, P., Silver, A. J. et al. (2017). N Engl J Med 377, 111-121. 3. Fuster, J. J., MacLauchlan, S., Zuriaga, M. A. et al. (2017). Science 355, 842-847. 4. Sano, S., Oshima, K., Wang, Y. et al. (2018). J Am Coll Cardiol 71, 875-886. 5. Zhang, Q., Zhao, K., Shen, Q. et al. (2015). Nature 525, 389-393. 6. Pan, W., Zhu, S., Qu, K. et al. (2017). Immunity 47, 284-297 e285. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 293 (4) ◽  
pp. F1093-F1098 ◽  
Author(s):  
Hayley Dickinson ◽  
Karen Moritz ◽  
E. Marelyn Wintour ◽  
David W. Walker ◽  
Michelle M. Kett

The desert-adapted spiny mouse has a significantly lower glomerular number, increased glomerular size, and a more densely packed renal papillae compared with the similar-sized laboratory-adapted C57BL/6 mouse. In the present study we examined the functional consequences of these structural differences in young adult male spiny and C57BL/6 mice and detailed the impact of 1 wk of a high-salt (10% wt/wt NaCl) diet. Basal food and water intake, urine and feces production, and urinary electrolyte concentrations were not different between species, although urinary urea concentrations were higher in spiny mice ( P < 0.05). On normal salt, MAP of the anesthetized spiny mouse was ∼18 mmHg lower, effective renal plasma flow (ERPF) was 40% lower ( P < 0.001), and glomerular filtration rate (GFR) tended to be lower than in the C57BL/6 mouse. On the high-salt diet, both species had similar 24-h NaCl excretions; but C57BL/6 mice required a significantly increased amount of water (lower urine NaCl concentration) than the spiny mice. Filtration fraction was greater in both species on the high-salt diet. Spiny mice had greater GFR and ERPF after the high-salt diet, whereas the C57BL/6 mouse showed little change in GFR. The ability of the spiny mouse to tolerate a significantly higher plasma osmolality after salt, measured by a decreased drinking response, and the ability to increase ERPF at a lower MAP are features that allow this species to conserve water more efficiently than can be done in the C57BL/6 mouse. These features are important, particularly since the desert mouse has a smaller kidney, with fewer nephrons.


2018 ◽  
Vol 52 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Gonçalo Pinheiro ◽  
Diogo Filipe Prata ◽  
Inês Maria Araújo ◽  
Gustavo Tiscornia

The African spiny mouse ( Acomys spp.) is an emerging animal model with remarkable biological characteristics that make it a subject of interest for a broad range of research fields. Typically a desert species adapted to a low-calorie diet, spiny mice develop diabetes-related symptoms when switched to high-energy diets. Spiny mice undergo relatively long gestation periods and have small litters of highly developed pups, making them an adequate model for late organogenesis and perinatal biology. Recently, they have been shown to have remarkable healing and regeneration capabilities, which make them unique among mammals. In this work, we describe our experience in housing a colony of African spiny mice and cover all basic aspects of feeding, maintenance and breeding for research purposes.


Sign in / Sign up

Export Citation Format

Share Document