scholarly journals Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chaojie Zhong ◽  
Hongjie Xia ◽  
Awadalkareem Adam ◽  
Binbin Wang ◽  
Renee L. Hajnik ◽  
...  

AbstractA candidate multigenic SARS-CoV-2 vaccine based on an MVA vector expressing both viral N and S proteins (MVA-S + N) was immunogenic, and induced T-cell responses and binding antibodies to both antigens but in the absence of detectable neutralizing antibodies. Intranasal immunization with the vaccine diminished viral loads and lung inflammation in mice after SARS-CoV-2 challenge, which correlated with the T-cell response induced by the vaccine in the lung, indicating that T-cell immunity is also likely critical for protection against SARS-CoV-2 infection in addition to neutralizing antibodies.

2021 ◽  
Author(s):  
Kathleen M.E. Gallagher ◽  
Mark B. Leick ◽  
Rebecca C. Larson ◽  
Trisha R. Berger ◽  
Katelin Katsis ◽  
...  

Recently, two mRNA vaccines to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become available, but there is also an emergence of SARS-CoV-2 variants with increased transmissibility and virulence. A major concern is whether the available vaccines will be equally effective against these variants. The vaccines are designed to induce an immune response against the SARS-CoV-2 spike protein, which is required for viral entry to host cells. Immunity to SARS-CoV-2 is often evaluated by antibody production, while less is known about the T-cell response. Here we developed, characterized, and implemented two standardized, functional assays to measure T-cell immunity to SARS-CoV-2 in uninfected, convalescent, and vaccinated individuals. We found that vaccinated individuals had robust T-cell responses to the wild type spike and nucleocapsid proteins, even more so than convalescent patients. We also found detectable but diminished T-cell responses to spike variants (B.1.1.7, B.1.351, and B.1.1.248) among vaccinated but otherwise healthy donors. Since decreases in antibody neutralization have also been observed with some variants, investigation into the T-cell response to these variants as an alternative means of viral control is imperative. Standardized measurements of T-cell responses to SARS-CoV-2 are feasible and can be easily adjusted to determine changes in response to variants.


2021 ◽  
Author(s):  
Roanne Keeton ◽  
Marius B Tincho ◽  
Amkele Ngomti ◽  
Richard Baguma ◽  
Ntombi Benede ◽  
...  

The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicron's extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, cross-recognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.


2000 ◽  
Vol 68 (11) ◽  
pp. 6223-6232 ◽  
Author(s):  
Magali Moretto ◽  
Lori Casciotti ◽  
Brigit Durell ◽  
Imtiaz A. Khan

ABSTRACT Cell-mediated immunity has been reported to play an important role in defense against Encephalitozoon cuniculi infection. Previous studies from our laboratory have underlined the importance of cytotoxic CD8+ T lymphocytes (CTL) in survival of mice infected with E. cuniculi. In the present study, immune response against E. cuniculi infection in CD4+T-cell-deficient mice was evaluated. Similar to resistant wild-type animals, CD4−/− mice were able to resolve E. cuniculi infection even at a very high challenge dose (5 × 107 spores/mouse). Tissues from infected CD4−/− mice did not exhibit higher parasite loads in comparison to the parental wild-type mice. Conversely, at day 21 postinfection, susceptible CD8−/− mice had 1014 times more parasites in the liver compared to control wild-type mice. Induction of the CD8+ T-cell response in CD4−/− mice against E. cuniculi infection was studied. Interestingly, a normal antigen-specific CD8+T-cell response to E. cuniculi infection was observed in CD4−/− mice (precursor proliferation frequency, 1/2.5 × 104 versus 1/104 in wild-type controls). Lack of CD4+ T cells did not alter the magnitude of the antigen-specific CTL response (precursor CTL frequency; 1/1.4 × 104 in CD4−/− mice versus 1/3 × 104 in control mice). Adoptive transfer of immune CD8+ T cells from both CD4−/− and wild-type animals prevented the mortality in CD8−/− mice.E. cuniculi infection thus offers an example of an intracellular parasitic infection where CD8+ T-cell immunity can be induced in the absence of CD4+ T cells.


2021 ◽  
Author(s):  
Patricia Kaaijk ◽  
Veronica Olivo Pimentel ◽  
Maarten E. Emmelot ◽  
Martien Poelen ◽  
Alper Cevirgel ◽  
...  

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to considerable morbidity/mortality worldwide, but most infections, especially among children, have a mild course. However, it remains largely unknown whether infected children develop cellular immune memory. Methods: To determine whether a memory T cell response is being developed as an indicator for long-term immune protection, we performed a longitudinal assessment of the SARS-CoV-2-specific T cell response by IFN-γ ELISPOT and activation marker expression analyses of peripheral blood samples from children and adults with mild-to-moderate COVID-19. Results: Upon stimulation of PBMCs with heat-inactivated SARS-CoV-2 or overlapping peptides of spike (S-SARS-CoV-2) and nucleocapsid proteins, we found S-SARS-CoV-2-specific IFN-ɣ T cell responses in most infected children (83%) and all adults (100%) that were absent in unexposed controls. Frequencies of SARS-CoV-2-specific T cells were higher in infected adults, especially in those with moderate symptoms, compared to infected children. The S-SARS-CoV-2 IFN-ɣ T cell response correlated with S1-SARS-CoV-2-specific serum IgM, IgG, and IgA antibody concentrations. Predominantly, effector memory CD4+ T cells of a Th1 phenotype were activated upon exposure to SARS-CoV-2 antigens, which persisted for 4-8 weeks after symptom onset. We detected very low frequencies of SARS-CoV-2-reactive CD8+ T cells in these individuals. Conclusions: Our data indicate that an antigen-specific memory CD4+ T cell response is induced in children and adults with mild SARS-CoV-2 infection. T cell immunity induced after mild COVID-19 could contribute to protection against re-infection.


2021 ◽  
Author(s):  
Percy Knolle ◽  
Nina Körber ◽  
Alina Priller ◽  
Sarah Yazici ◽  
Tanja Bauer ◽  
...  

Abstract Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is controlled by the host´s immune response1-4, but longitudinal follow-up studies of virus-specific immunity to evaluate protection from re-infection are lacking. Here, we report the results from a prospective study that started during the first wave of the COVID-19 pandemic in spring 2020, where we identified 91 convalescents from mild SARS-CoV-2 infection among 4554 health care workers. We followed the dynamics and magnitude of spike-specific immunity in convalescents during the spontaneous course over ≥ 9 months, after SARS-CoV-2 re-exposure and after BNT162b2 mRNA vaccination. Virus-neutralizing antibodies and spike-specific T cell responses with predominance of IL-2-secreting polyfunctional CD4 T cells continuously declined over 9 months, but remained detectable at low levels. After a single vaccination, convalescents simultaneously mounted strong antibody and T cell responses against the SARS-CoV-2 spike proteins. In naïve individuals, a prime vaccination induced preferentially IL-2-secreting CD4 T cells that preceded production of spike-specific virus-neutralizing antibodies after boost vaccination. Response to vaccination, however, was not homogenous. Compared to four individuals among 455 naïve vaccinees (0.9%), we identified 5/82 (6.1%) convalescents with a delayed response to vaccination. These convalescents had originally developed dysfunctional spike-specific immune responses after SARS-CoV-2 infection, and required prime and boost vaccination to develop strong spike-specific immunity. Importantly, during the second wave of the COVID-19 pandemic in fall/winter of 2021 and prior to vaccination we detected a surge of virus-neutralizing antibodies consistent with re-exposure to SARS-CoV-2 in 6 out of 82 convalescents. The selective increase in virus-neutralizing antibodies occurred without systemic re-activation of spike-specific T cell immunity, whereas a single BNT162b2 mRNA vaccination sufficed to induce strong spike-specific antibody and systemic T cell responses in the same individuals. These results support the notion that BNT162b2 mRNA vaccination synchronizes spike-specific immunity in all convalescents of mild SARS-CoV-2 infection and may provide additional protection from re-infection by inducing more rigorous stimulation of spike-specific T cell immunity than re-exposure with SARS-CoV-2.


2021 ◽  
Vol 21 (3) ◽  
pp. 178-192
Author(s):  
D. A. Poteryaev ◽  
S. G. Abbasova ◽  
P. E. Ignatyeva ◽  
O. M. Strizhakova ◽  
S. V. Kolesnik ◽  
...  

With the onset of the COVID-19 pandemic, a number of molecular-based tests have been developed to diagnose SARS-CoV-2 infection. However, numerous available serological tests lack sufficient sensitivity or specificity. They do not detect specific antibodies in a significant proportion of patients with PCR-confirmed COVID-19. There is evidence that some convalescents have a relatively short-lived humoral immunity. In contrast, a number of publications have shown that T-cell response to human coronaviruses, including SARS-CoV-1, MERS, and SARS-CoV-2, can be strong and long-term. Assessment of T-cell immunity to SARS-CoV-2 is important not only for stratification of risks and identification of potentially protected populations with immunity acquired as a result of previous infection, but also for determining immunogenicity and potential efficacy of vaccines under development. The existing methods of quantitative or semi-quantitative assessment of specific T-cell response are mainly used in scientific research and are not standardised. The aim of the study was to develop and verify experimentally a test kit to be used in a standardised procedure for in vitro determination of T-cells specific to SARS-CoV-2 antigens, in human peripheral blood. Materials and methods: the TigraTest® SARS-CoV-2 kit developed by GENERIUM, which determines the number of T-cells secreting interferon gamma in vitro, was tested in the study. Samples of venous blood of volunteers from three different groups were analysed in the study: presumably healthy volunteers; COVID-19 convalescents; individuals vaccinated against SARS-CoV-2. Results: the authors developed the TigraTest® SARS-CoV-2 kit for in vitro determination of T-cells specific to SARS-CoV-2 antigens in human peripheral blood, demonstrated its specificity and performed preliminary assessment of its sensitivity. The study analysed the range and magnitude of the T-cell response in convalescent and vaccinated individuals. A pronounced T-cell response was also shown in some individuals with no symptoms or with unconfirmed diagnosis. It was discovered that the mean T-cell response to peptides of the spike protein (S-protein) was higher in the vaccinated individuals than in the convalescent patients. A correlation was determined between the severity of the disease and the level of T-cell response. Specific contributions of various groups of antigens to the T-cell response after COVID-19 infection were also determined. Conclusions: the TigraTest® SARS-CoV-2 kit is a specific and sensitive tool for the assessment of T-cell immunity to the SARS-CoV-2 virus, which can also be used for vaccinated individuals. The kit may be used in clinical practice for comprehensive assessment of immunity to SARS-CoV-2.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 3059-3059
Author(s):  
D. Wallace ◽  
M. Disis ◽  
A. Coveler ◽  
D. Higgins ◽  
J. Childs ◽  
...  

3059 Background: Studies have demonstrated that the level of HER2 gene amplification in breast cancer, assessed by fluorescence in situ hybridization (FISH), correlates with favorable clinical response after treatment with trastuzumab. We questioned whether HER2 gene amplification impacted the development of HER2-specific T-cell immunity following immunization with a HER2 vaccine. Methods: Patients with HER2+ stage III or IV breast cancer, treated to complete remission or stable bone only disease, were enrolled in one of two concurrent clinical trials of HER2-specific vaccines. Eligibility criteria between the two studies were similar. Patients received either a plasmid DNA-based vaccine encoding the HER2 intracellular domain or a peptide-based vaccine composed of 3 HER2 class II epitopes. Peripheral blood was assessed for HER2-specific T-cell responses by interferon gamma (IFN-g) ELISPOT prior to, immediately after, and 6 months to 1 year after the end of vaccinations. Both immune response and FISH data were available on 31 patients. Results: Correlation of FISH levels to IFN-g spots/well in evaluable patients revealed the level of HER2 gene amplification was not related to the presence of pre-existent HER2-specific T-cell immunity prior to vaccination (p=0.43), the generation of a HER2-specific immune response after vaccination (p=0.35), or the persistence of the HER2-specific T-cell response (p=0.33). However, the magnitude of the T-cell response achieved was less as HER2 gene amplification increased (p=0.05). Conclusions: The level of HER2 gene amplification in the primary tumor can adversely impact the magnitude of HER2-specific T-cell immunity achieved after vaccination. No significant financial relationships to disclose.


2006 ◽  
Vol 80 (19) ◽  
pp. 9779-9788 ◽  
Author(s):  
Helen Horton ◽  
Colin Havenar-Daughton ◽  
Deborah Lee ◽  
Erin Moore ◽  
Jianhong Cao ◽  
...  

ABSTRACT Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-γ)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-γ and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-naïve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Alba Grifoni ◽  
John Pham ◽  
John Sidney ◽  
Patrick H. O'Rourke ◽  
Sinu Paul ◽  
...  

ABSTRACT While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior infection with DENV recognize ZIKV-derived peptides and that DENV exposure prior to ZIKV infection influences the timing, magnitude, and quality of the T cell response. Additionally, we show that ZIKV-specific responses target different proteins than DENV-specific responses, pointing toward important implications for vaccine design against this global threat.


Sign in / Sign up

Export Citation Format

Share Document