scholarly journals Accelerated, scalable and reproducible AI-driven gravitational wave detection

2021 ◽  
Author(s):  
E. A. Huerta ◽  
Asad Khan ◽  
Xiaobo Huang ◽  
Minyang Tian ◽  
Maksim Levental ◽  
...  
2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


2003 ◽  
Vol 42 (7) ◽  
pp. 1257 ◽  
Author(s):  
Guido Müller ◽  
Tom Delker ◽  
David B. Tanner ◽  
David Reitze

Author(s):  
Kun Chen ◽  
Xiaofeng Zhang ◽  
Tong Guo ◽  
Zhi-Ming Cai ◽  

The observation of gravitational wave enables human to explore the origin, formation and evolution of universe governed by the gravitational interaction and the nature of gravity beyond general theory of relativity. The groundbreaking discovery of Gravitational Wave by Laser Interferometer Gravitational-Wave Observatory provides a brand-new observation way. While detecting gravitational wave on ground is limited by noises and test scale, space detection is an optimized alternative to learn rich sources in range of 0.1 mHz–1 Hz. Considering the great significance of space gravitational wave detection, ESA proposed LISA project, CAS also proposed Taiji project. Due to the extremely weak gravitational wave signal and high measurement accuracy requirement, the spaceborne GW observation antenna is accomplished by three spacecrafts constitute isosceles triangle formation intersatellite interferometer. The arm length of the interferometer reaches millions of kilometers between them, and the measurement accuracy reaches pico-meter magnitude. There are many key technologies including pm magnitude space laser interferometer metrology, drag-free control using TM of Gravity Reference Sensor, [Formula: see text]N micro thruster, ultra-clean & ultra-stable spacecraft, etc. This paper focuses on key technologies of the ultra-clean & ultra-stable spacecraft, analyzing the design of mechanical, thermal control and magnetic clean. Moreover, it reports the preliminary results of the technological breakthrough.


Sign in / Sign up

Export Citation Format

Share Document