scholarly journals The design space for long-duration energy storage in decarbonized power systems

Nature Energy ◽  
2021 ◽  
Author(s):  
Nestor A. Sepulveda ◽  
Jesse D. Jenkins ◽  
Aurora Edington ◽  
Dharik S. Mallapragada ◽  
Richard K. Lester
Author(s):  
Omar J Guerra ◽  
Joshua Eichman ◽  
Paul Denholm

Achieving 100% carbon-free or renewable power systems can be facilitated by the deployment of energy storage technologies at all timescales, including short-duration, long-duration, and seasonal scales; however, most current literature...


2020 ◽  
Vol 8 ◽  
Author(s):  
Jiazi Zhang ◽  
Omar J. Guerra ◽  
Joshua Eichman ◽  
Matthew A. Pellow

The integration of high shares of variable renewable energy raises challenges for the reliability and cost-effectiveness of power systems. The value of long-duration energy storage, which helps address variability in renewable energy supply across days and seasons, is poised to grow significantly as power systems shift to larger shares of variable generation such as wind and solar. This study explores the system-level services and associated benefits of long-duration energy storage on the 2050 Western Interconnection (WI). The operation of the future WI system with 85% renewable penetration is simulated using a two-stage production cost model. The impact of long duration energy storage on systemwide operations is examined for the 2050 WI system, using a range of round-trip efficiencies corresponding to four different energy storage technologies. The analysis projects the energy storage dispatch profile, system-wide production cost savings (from both diurnal and seasonal operation), and impacts on generation mix, and change in renewable generation curtailment.


2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


2021 ◽  
Vol 10 (4) ◽  
pp. 675-703
Author(s):  
Dongxu Li ◽  
Xiaojun Zeng ◽  
Zhipeng Li ◽  
Zong-Yang Shen ◽  
Hua Hao ◽  
...  

AbstractDielectric ceramic capacitors, with the advantages of high power density, fast charge-discharge capability, excellent fatigue endurance, and good high temperature stability, have been acknowledged to be promising candidates for solid-state pulse power systems. This review investigates the energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric from the viewpoint of chemical modification, macro/microstructural design, and electrical property optimization. Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized. Finally, we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future.


Sign in / Sign up

Export Citation Format

Share Document