scholarly journals Benefit Analysis of Long-Duration Energy Storage in Power Systems with High Renewable Energy Shares

2020 ◽  
Vol 8 ◽  
Author(s):  
Jiazi Zhang ◽  
Omar J. Guerra ◽  
Joshua Eichman ◽  
Matthew A. Pellow

The integration of high shares of variable renewable energy raises challenges for the reliability and cost-effectiveness of power systems. The value of long-duration energy storage, which helps address variability in renewable energy supply across days and seasons, is poised to grow significantly as power systems shift to larger shares of variable generation such as wind and solar. This study explores the system-level services and associated benefits of long-duration energy storage on the 2050 Western Interconnection (WI). The operation of the future WI system with 85% renewable penetration is simulated using a two-stage production cost model. The impact of long duration energy storage on systemwide operations is examined for the 2050 WI system, using a range of round-trip efficiencies corresponding to four different energy storage technologies. The analysis projects the energy storage dispatch profile, system-wide production cost savings (from both diurnal and seasonal operation), and impacts on generation mix, and change in renewable generation curtailment.

Author(s):  
Omar J Guerra ◽  
Joshua Eichman ◽  
Paul Denholm

Achieving 100% carbon-free or renewable power systems can be facilitated by the deployment of energy storage technologies at all timescales, including short-duration, long-duration, and seasonal scales; however, most current literature...


Author(s):  
Eoghan McKenna ◽  
John Barton ◽  
Murray Thomson

This article studies the impact on CO2 emissions of electrical storage systems in power systems with high penetrations of wind generation. Using the Irish All-Island power system as a case-study, data on the observed dispatch of each large generator for the years 2008 to 2012 was used to estimate a marginal emissions factor of 0.547 kgCO2/kWh. Selected storage operation scenarios were used to estimate storage emissions factors – the carbon emissions impact associated with each unit of storage energy used. The results show that carbon emissions increase in the short-run for all storage technologies when consistently operated in ‘peak shaving and trough filling’ modes, and indicate that this should also be true for the GB and US power systems. Carbon emissions increase when storage is operated in ‘wind balancing’ mode, but reduce when storage is operated to reduce wind power curtailment, as in this case wind power operates on the margin. For power systems where wind is curtailed to maintain system stability, the results show that energy storage technologies that provide synthetic inertia achieve considerably greater carbon reductions. The results highlight a tension for policy makers and investors in storage, as scenarios based on the operation of storage for economic gains increase emissions, while those that decrease emissions are unlikely to be economically favourable. While some scenarios indicate storage increases emissions in the short-run, these should be considered alongside long-run assessments, which indicate that energy storage is essential to the secure operation of a fossil fuel-free grid.


2021 ◽  
Vol 11 (3) ◽  
pp. 1135
Author(s):  
Zhongjie Guo ◽  
Wei Wei ◽  
Maochun Wang ◽  
Jian Li ◽  
Shaowei Huang ◽  
...  

The uncertain natures of renewable energy lead to its underutilization; energy storage unit (ESU) is expected to be one of the most promising solutions to this issue. This paper evaluates the impact of ESUs on renewable energy curtailment. For any fixed renewable power output, the evaluation model minimizes the total amount of curtailment and is formulated as a mixed integer linear program (MILP) with the complementarity constraints on the charging and discharging behaviors of ESUs; by treating the power and energy capacities of ESUs as parameters, the MILP is transformed into a multi-parametric MILP (mp-MILP), whose optimal value function (OVF) explicitly maps the parameters to the renewable energy curtailment. Further, given the inexactness of uncertainty’s probability distribution, a distributionally robust mp-MILP (DR-mp-MILP) is proposed that considers the worst distribution in a neighborhood of the empirical distribution built by the representative scenarios. The DR-mp-MILP has a max–min form and is reformed as a canonical mp-MILP by duality theory. The proposed method was validated on the modified IEEE nine-bus systems; the parameterized OVFs provide insightful suggestions on storage sizing.


Nature Energy ◽  
2021 ◽  
Author(s):  
Nestor A. Sepulveda ◽  
Jesse D. Jenkins ◽  
Aurora Edington ◽  
Dharik S. Mallapragada ◽  
Richard K. Lester

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4054 ◽  
Author(s):  
Youssef Benchaabane ◽  
Rosa Elvira Silva ◽  
Hussein Ibrahim ◽  
Adrian Ilinca ◽  
Ambrish Chandra ◽  
...  

Remote and isolated communities in Canada experience gaps in access to stable energy sources and must rely on diesel generators for heat and electricity. However, the cost and environmental impact resulting from the use of fossil fuels, especially in local energy production, heating, industrial processes and transportation are compelling reasons to support the development and deployment of renewable energy hybrid systems. This paper presents a computer model for economic analysis and risk assessment of a wind–diesel hybrid system with compressed air energy storage. The proposed model is developed from the point of view of the project investor and it includes technical, financial, risk and environmental analysis. Robustness is evaluated through sensitivity analysis. The model has been validated by comparing the results of a wind–diesel case study against those obtained using HOMER (National Renewable Energy Laboratory, Golden, CO, United States) and RETScreen (Natural Resources Canada, Government of Canada, Canada) software. The impact on economic performance of adding energy storage system in a wind–diesel hybrid system has been discussed. The obtained results demonstrate the feasibility of such hybrid system as a suitable power generator in terms of high net present value and internal rate of return, low cost of energy, as well as low risk assessment. In addition, the environmental impact is positive since less fuel is used.


Author(s):  
Francisco Díaz-González ◽  
Eduard Bullich-Massagué ◽  
Cristina Vitale ◽  
Marina Gil-Sánchez ◽  
Mònica Aragüés-Peñalba ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1453 ◽  
Author(s):  
Huanan Liu ◽  
Dezhi Li ◽  
Yuting Liu ◽  
Mingyu Dong ◽  
Xiangnan Liu ◽  
...  

With the rapid development of industry, more fossil energy is consumed to generate electricity, which increases carbon emissions and aggravates the burden of environmental protection. To reduce carbon emissions, traditional centralized power generation networks are transforming into distributed renewable generation systems. However, the deployment of distributed generation systems can affect power system economy and stability. In this paper, under different time scales, system economy, stability, carbon emissions, and renewable energy fluctuation are comprehensively considered to optimize battery and super-capacitor installation capacity for an off-grid power system. After that, based on the genetic algorithm, this paper shows the optimal system operation strategy under the condition of the theoretical best energy storage capacity. Finally, the theoretical best capacity is tested under different renewable energy volatility rates. The simulation results show that by properly sizing the storage system’s capacity, although the average daily costs of the system can increase by 10%, the system’s carbon emissions also reduce by 42%. Additionally, the system peak valley gap reduces by 23.3%, and the renewable energy output’s fluctuation range and system loss of load probability are successfully limited in an allowable range. Lastly, it has less influence on the theoretical best energy storage capacity if the renewable energy volatility rate can be limited to within 10%.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Sign in / Sign up

Export Citation Format

Share Document