scholarly journals A large-scale binding and functional map of human RNA-binding proteins

Nature ◽  
2020 ◽  
Vol 583 (7818) ◽  
pp. 711-719 ◽  
Author(s):  
Eric L. Van Nostrand ◽  
Peter Freese ◽  
Gabriel A. Pratt ◽  
Xiaofeng Wang ◽  
Xintao Wei ◽  
...  

AbstractMany proteins regulate the expression of genes by binding to specific regions encoded in the genome1. Here we introduce a new data set of RNA elements in the human genome that are recognized by RNA-binding proteins (RBPs), generated as part of the Encyclopedia of DNA Elements (ENCODE) project phase III. This class of regulatory elements functions only when transcribed into RNA, as they serve as the binding sites for RBPs that control post-transcriptional processes such as splicing, cleavage and polyadenylation, and the editing, localization, stability and translation of mRNAs. We describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. Integrative analyses using five assays identify RBP binding sites on RNA and chromatin in vivo, the in vitro binding preferences of RBPs, the function of RBP binding sites and the subcellular localization of RBPs, producing 1,223 replicated data sets for 356 RBPs. We describe the spectrum of RBP binding throughout the transcriptome and the connections between these interactions and various aspects of RNA biology, including RNA stability, splicing regulation and RNA localization. These data expand the catalogue of functional elements encoded in the human genome by the addition of a large set of elements that function at the RNA level by interacting with RBPs.

2017 ◽  
Author(s):  
Eric L Van Nostrand ◽  
Peter Freese ◽  
Gabriel A Pratt ◽  
Xiaofeng Wang ◽  
Xintao Wei ◽  
...  

Genomes encompass all the information necessary to specify the development and function of an organism. In addition to genes, genomes also contain a myriad of functional elements that control various steps in gene expression. A major class of these elements function only when transcribed into RNA as they serve as the binding sites for RNA binding proteins (RBPs), which act to control post-transcriptional processes including splicing, cleavage and polyadenylation, RNA editing, RNA localization, stability, and translation. Despite the importance of these functional RNA elements encoded in the genome, they have been much less studied than genes and DNA elements. Here, we describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. These data expand the catalog of functional elements encoded in the human genome by addition of a large set of elements that function at the RNA level through interaction with RBPs.


2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


2021 ◽  
Author(s):  
Scott I Adamson ◽  
Lijun Zhan ◽  
Brenton R Graveley

Background: RNA binding protein-RNA interactions mediate a variety of processes including pre-mRNA splicing, translation, decay, polyadenylation and many others. Previous high-throughput studies have characterized general sequence features associated with increased and decreased splicing of certain exons, but these studies are limited by not knowing the mechanisms, and in particular, the mediating RNA binding proteins, underlying these associations. Results: Here we utilize ENCODE data from diverse data modalities to identify functional splicing regulatory elements and their associated RNA binding proteins. We identify features which make splicing events more sensitive to depletion of RNA binding proteins, as well as which RNA binding proteins act as splicing regulators sensitive to depletion. To analyze the sequence determinants underlying RBP-RNA interactions impacting splicing, we assay tens of thousands of sequence variants in a high-throughput splicing reporter called Vex-seq and confirm a small subset in their endogenous loci using CRISPR base editors. Finally, we leverage other large transcriptomic datasets to confirm the importance of RNA binding proteins which we designed experiments around and identify additional RBPs which may act as additional splicing regulators of the exons studied. Conclusions: This study identifies sequence and other features underlying splicing regulation mediated specific RNA binding proteins, as well as validates and identifies other potentially important regulators of splicing in other large transcriptomic datasets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250592
Author(s):  
Hiren Banerjee ◽  
Ravinder Singh

Background Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. Methodology/Principal findings Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. Conclusion/Significance We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.


2014 ◽  
Vol 11 (10) ◽  
pp. 1064-1070 ◽  
Author(s):  
Katharina Kramer ◽  
Timo Sachsenberg ◽  
Benedikt M Beckmann ◽  
Saadia Qamar ◽  
Kum-Loong Boon ◽  
...  

2019 ◽  
Author(s):  
Martin Lewinski ◽  
Yannik Bramkamp ◽  
Tino Köster ◽  
Dorothee Staiger

AbstractBackgroundRNA-binding proteins interact with their target RNAs at specific sites. These binding sites can be determined genome-wide through individual nucleotide resolution crosslinking immunoprecipitation (iCLIP). Subsequently, the binding sites have to be visualized. So far, no visualization tool exists that is easily accessible but also supports restricted access so that data can be shared among collaborators.ResultsHere we present SEQing, a customizable interactive dashboard to visualize crosslink sites on target genes of RNA-binding proteins that have been obtained by iCLIP. Moreover, SEQing supports RNA-seq data that can be displayed in a diffrerent window tab. This allows, e.g. crossreferencing the iCLIP data with genes differentially expressed in mutants of the RBP and thus obtain some insights into a potential functional relevance of the binding sites. Additionally, detailed information on the target genes can be incorporated in another tab.ConclusionSEQing is written in Python3 and runs on Linux. The web-based access makes iCLIP data easily accessible, even with mobile devices. SEQing is customizable in many ways and has also the option to be secured by a password. The source code is available at https://github.com/malewins/SEQing.


Sign in / Sign up

Export Citation Format

Share Document