scholarly journals Rare variant contribution to human disease in 281,104 UK Biobank exomes

Nature ◽  
2021 ◽  
Author(s):  
Quanli Wang ◽  
Ryan S. Dhindsa ◽  
Keren Carss ◽  
Andrew R. Harper ◽  
Abhishek Nag ◽  
...  

AbstractGenome-wide association studies have uncovered thousands of common variants associated with human disease, but the contribution of rare variation to common disease remains relatively unexplored. The UK Biobank (UKB) contains detailed phenotypic data linked to medical records for approximately 500,000 participants, offering an unprecedented opportunity to evaluate the impact of rare variation on a broad collection of traits1,2. Here, we studied the relationships between rare protein-coding variants and 17,361 binary and 1,419 quantitative phenotypes using exome sequencing data from 269,171 UKB participants of European ancestry. Gene-based collapsing analyses revealed 1,703 statistically significant gene-phenotype associations for binary traits, with a median odds ratio of 12.4. Furthermore, 83% of these associations were undetectable via single variant association tests, emphasizing the power of gene-based collapsing analysis in the setting of high allelic heterogeneity. Gene-phenotype associations were also significantly enriched for loss-of-function-mediated traits and approved drug targets. Finally, we performed ancestry-specific and pan-ancestry collapsing analyses using exome sequencing data from 11,933 UKB participants of African, East Asian, or South Asian ancestry. Together, our results highlight a significant contribution of rare variants to common disease. Summary statistics are publicly available through an interactive portal (http://azphewas.com/).

2021 ◽  
Author(s):  
Orna Mizrahi Man ◽  
Marcos H Woehrmann ◽  
Teresa A Webster ◽  
Jeremy Gollub ◽  
Adrian Bivol ◽  
...  

Objective: To significantly improve the positive predictive value (PPV) and sensitivity of Applied Biosystems™ Axiom™ array variant calling, by means of novel improvement to genotyping algorithms and careful quality control of array probesets. The improvement makes array genotyping more suitable for very rare variants. Design: Retrospective evaluation of UK Biobank array data re-genotyped with improved algorithms for rare variants. Participant: 488,359 people recruited to the UK Biobank with Axiom array genotyping data including 200,630 with exome sequencing data. Main Outcome Measures: A comparison of genotyping calls from array data to genotyping calls on a subset of variants with exome sequencing data. Results: Axiom genotyping [18] performed well, based on comparison to sequencing data, for over 100,000 common variants directly genotyped on the Axiom UK Biobank array and also exome sequenced by the UK Biobank Exome Sequencing Consortium. However, in a comparison to the initial exome sequencing results of the first 50K individuals, Weedon et al. [1] observed that when grouping these variants by the minor allele frequency (MAF) observed in UK Biobank, the concordance with sequencing and resulting positive predictive value (PPV) decreased with the number of heterozygous (Het) array calls per variant. An improved genotyping algorithm, Rare Heterozygous Adjustment (RHA) [16], released mid-2020 for genotyping on Axiom arrays, significantly improves PPV in all MAF ranges for the 50K data as well as when compared to the exome sequencing of 200K individuals, released after Weedon et al. [1] performed their comparison. The RHA algorithm improved PPVs in the 200K data in the lowest three frequency groups [0, 0.001%), [0.001%, 0.005%) and [0.005%, 0.01%) to 83%, 82% and 88%; respectively. PPV was above 95% for higher MAF ranges without algorithm improvement. PPVs are somewhat higher in the 200K dataset, due to a different "truth set" from exome sequencing and because monomorphic exome loci are not included in the joint genotyping calls for the 200K data set, as explained in the methods section. Sensitivity was higher in the 200K data set than in the original 50K data as well, especially for low MAF ranges. This increase is in part due to the larger data set over which sensitivity could be computed and in part due to the different WES algorithms used for the 200K data [7]. Filtering of a relatively small number of non-performing probesets (determined without reference to the exome sequencing data) significantly improved sensitivities for all MAF ranges, resulting in 70%, 88% and 94% respectively in the three lowest MAF ranges and greater than 98% and 99.9% for the two higher MAF ranges ([0.01%, 1%), [1%, 50%]). Conclusions: Improved algorithms for genotyping along with enhanced quality control of array probesets, significantly improve the positive predictive value and the sensitivity of array data, making it suitable for the detection of very rare variants. The probeset filtering methods developed have resulted in better probe designs for arrays and the new genotyping algorithm is part of the standard algorithm for all Axiom arrays since early 2020.


2020 ◽  
Vol 43 (4) ◽  
Author(s):  
Murilo Guimarães Borges ◽  
Helena Tadiello de Moraes ◽  
Cristiane de Souza Rocha ◽  
Iscia Lopes-Cendes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rona J. Strawbridge ◽  
Keira J. A. Johnston ◽  
Mark E. S. Bailey ◽  
Damiano Baldassarre ◽  
Breda Cullen ◽  
...  

AbstractUnderstanding why individuals with severe mental illness (Schizophrenia, Bipolar Disorder and Major Depressive Disorder) have increased risk of cardiometabolic disease (including obesity, type 2 diabetes and cardiovascular disease), and identifying those at highest risk of cardiometabolic disease are important priority areas for researchers. For individuals with European ancestry we explored whether genetic variation could identify sub-groups with different metabolic profiles. Loci associated with schizophrenia, bipolar disorder and major depressive disorder from previous genome-wide association studies and loci that were also implicated in cardiometabolic processes and diseases were selected. In the IMPROVE study (a high cardiovascular risk sample) and UK Biobank (general population sample) multidimensional scaling was applied to genetic variants implicated in both psychiatric and cardiometabolic disorders. Visual inspection of the resulting plots used to identify distinct clusters. Differences between these clusters were assessed using chi-squared and Kruskall-Wallis tests. In IMPROVE, genetic loci associated with both schizophrenia and cardiometabolic disease (but not bipolar disorder or major depressive disorder) identified three groups of individuals with distinct metabolic profiles. This grouping was replicated within UK Biobank, with somewhat less distinction between metabolic profiles. This work focused on individuals of European ancestry and is unlikely to apply to more genetically diverse populations. Overall, this study provides proof of concept that common biology underlying mental and physical illness may help to stratify subsets of individuals with different cardiometabolic profiles.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 991
Author(s):  
Erik Widen ◽  
Timothy G. Raben ◽  
Louis Lello ◽  
Stephen D. H. Hsu

We use UK Biobank data to train predictors for 65 blood and urine markers such as HDL, LDL, lipoprotein A, glycated haemoglobin, etc. from SNP genotype. For example, our Polygenic Score (PGS) predictor correlates ∼0.76 with lipoprotein A level, which is highly heritable and an independent risk factor for heart disease. This may be the most accurate genomic prediction of a quantitative trait that has yet been produced (specifically, for European ancestry groups). We also train predictors of common disease risk using blood and urine biomarkers alone (no DNA information); we call these predictors biomarker risk scores, BMRS. Individuals who are at high risk (e.g., odds ratio of >5× population average) can be identified for conditions such as coronary artery disease (AUC∼0.75), diabetes (AUC∼0.95), hypertension, liver and kidney problems, and cancer using biomarkers alone. Our atherosclerotic cardiovascular disease (ASCVD) predictor uses ∼10 biomarkers and performs in UKB evaluation as well as or better than the American College of Cardiology ASCVD Risk Estimator, which uses quite different inputs (age, diagnostic history, BMI, smoking status, statin usage, etc.). We compare polygenic risk scores (risk conditional on genotype: PRS) for common diseases to the risk predictors which result from the concatenation of learned functions BMRS and PGS, i.e., applying the BMRS predictors to the PGS output.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1001
Author(s):  
Jiyoon Han ◽  
Joonhong Park

A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end‐phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Floranne Boulogne ◽  
Laura Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

Abstract Background and Aims Genetic testing in patients with suspected hereditary kidney disease does not always reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes that are not known to be involved in kidney disease, which makes it difficult to prioritize and interpret the relevance of these variants. As such, there is a clear need for methods that predict the phenotypic consequences of gene expression in a way that is as unbiased as possible. To help identify candidate genes we have developed KidneyNetwork, in which tissue-specific expression is utilized to predict kidney-specific gene functions. Method We combined gene co-expression in 878 publicly available kidney RNA-sequencing samples with the co-expression of a multi-tissue RNA-sequencing dataset of 31,499 samples to build KidneyNetwork. The expression patterns were used to predict which genes have a kidney-related function, and which (disease) phenotypes might be caused when these genes are mutated. By integrating the information from the HPO database, in which known phenotypic consequences of disease genes are annotated, with the gene co-expression network we obtained prediction scores for each gene per HPO term. As proof of principle, we applied KidneyNetwork to prioritize variants in exome-sequencing data from 13 kidney disease patients without a genetic diagnosis. Results We assessed the prediction performance of KidneyNetwork by comparing it to GeneNetwork, a multi-tissue co-expression network we previously developed. In KidneyNetwork, we observe a significantly improved prediction accuracy of kidney-related HPO-terms, as well as an increase in the total number of significantly predicted kidney-related HPO-terms (figure 1). To examine its clinical utility, we applied KidneyNetwork to 13 patients with a suspected hereditary kidney disease without a genetic diagnosis. Based on the HPO terms “Renal cyst” and “Hepatic cysts”, combined with a list of potentially damaging variants in one of the undiagnosed patients with mild ADPKD/PCLD, we identified ALG6 as a new candidate gene. ALG6 bears a high resemblance to other genes implicated in this phenotype in recent years. Through the 100,000 Genomes Project and collaborators we identified three additional patients with kidney and/or liver cysts carrying a suspected deleterious variant in ALG6. Conclusion We present KidneyNetwork, a kidney specific co-expression network that accurately predicts what genes have kidney-specific functions and may result in kidney disease. Gene-phenotype associations of genes unknown for kidney-related phenotypes can be predicted by KidneyNetwork. We show the added value of KidneyNetwork by applying it to exome sequencing data of kidney disease patients without a molecular diagnosis and consequently we propose ALG6 as a promising candidate gene. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes to better understand kidney physiology and pathophysiology. Acknowledgments This research was made possible through access to the data and findings generated by the 100,000 Genomes Project; http://www.genomicsengland.co.uk.


2017 ◽  
Vol 33 (15) ◽  
pp. 2402-2404 ◽  
Author(s):  
Alessandro Romanel ◽  
Tuo Zhang ◽  
Olivier Elemento ◽  
Francesca Demichelis

Sign in / Sign up

Export Citation Format

Share Document