scholarly journals A wide-orbit giant planet in the high-mass b Centauri binary system

Nature ◽  
2021 ◽  
Vol 600 (7888) ◽  
pp. 231-234
Author(s):  
Markus Janson ◽  
Raffaele Gratton ◽  
Laetitia Rodet ◽  
Arthur Vigan ◽  
Mickaël Bonnefoy ◽  
...  
Keyword(s):  
2011 ◽  
Vol 740 (2) ◽  
pp. 76 ◽  
Author(s):  
I. Ramírez ◽  
J. Meléndez ◽  
D. Cornejo ◽  
I. U. Roederer ◽  
J. R. Fish

2019 ◽  
Vol 486 (3) ◽  
pp. 3248-3258
Author(s):  
R Cappallo ◽  
S G T Laycock ◽  
D M Christodoulou ◽  
M J Coe ◽  
A Zezas

ABSTRACT The X-ray source SXP348 is a high-mass X-ray binary system in the Small Magellanic Cloud. Since its 1998 discovery by BeppoSAX, this pulsar has exhibited a spin period of ∼340−350 s. In an effort to determine the orientation and magnetic geometry of this source, we used our geometric model Polestar to fit 71 separate pulse profiles extracted from archival Chandra and XMM-Newton observations over the past two decades. During 2002, pulsations ceased being detectable for nine months despite the source remaining in a bright state. When pulsations resumed, our model fits changed, displaying a change in accretion geometry. Furthermore, in 2006, detectable pulsations again ceased, with 2011 marking the last positive detection of SXP348 as a point source. These profile fits will be released for public use as part of the database of Magellanic Cloud pulsars.


1995 ◽  
Vol 163 ◽  
pp. 251-253 ◽  
Author(s):  
V. S. Niemela ◽  
W. Seggewiss ◽  
A. F. J. Moffat

The bright star Sk—67°18 (Brey 5) in the Large Magellanic Cloud (LMC) contains an eclipsing binary system. Our radial velocity study reveals that the orbital period is almost exactly two days. The spectra also show that the star's primary component is not of spectral type WN, but that the star is rather an Of+O type binary where the primary is probably of type O3f*. Furthermore, Sk—67°18 appears to be a high-mass multiple system.


2008 ◽  
Vol 17 (10) ◽  
pp. 1939-1945 ◽  
Author(s):  
M. PERUCHO ◽  
V. BOSCH-RAMON

In high-mass microquasars (HMMQ), strong interactions between jets and stellar winds at binary system scales could occur. In order to explore this possibility, we have performed numerical two-dimensional hydrodynamical simulations of jets crossing the dense stellar material to study how the jet will be affected by these interactions. We find that the jet head generates strong shocks in the wind. These shocks reduce the jet advance speed, and compress and heat up the jet and wind material. In addition, strong recollimation shocks can occur where pressure balance between the jet side and the surrounding medium is reached. All this, together with jet bending, could lead to the destruction of jets with power < 1036 erg/s . The conditions around the outflow shocks would be convenient for accelerating particles up to ~ TeV energies. These accelerated particles could emit via synchrotron and inverse Compton (IC) scattering if they were leptons, and via hadronic processes if they were hadrons.


2011 ◽  
Vol 75 (3) ◽  
pp. 437-439 ◽  
Author(s):  
V. G. Sinitsyna ◽  
S. I. Nikolsky ◽  
R. M. Mirzafatikhov ◽  
V. Yu. Sinitsyna
Keyword(s):  

10.14311/1332 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
I. Miškovičová ◽  
M. Hanke ◽  
J. Wilms ◽  
M. A. Nowak ◽  
K. Pottschmidt ◽  
...  

The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sight towards the source, allowing us to probe the structure and the dynamics of the wind.


2020 ◽  
Vol 160 (2) ◽  
pp. 72
Author(s):  
David P. Bennett ◽  
Andrzej Udalski ◽  
Ian A. Bond ◽  
Fumio Abe ◽  
Richard K. Barry ◽  
...  
Keyword(s):  

2019 ◽  
Vol 628 ◽  
pp. A126 ◽  
Author(s):  
M. Tucci Maia ◽  
J. Meléndez ◽  
D. Lorenzo-Oliveira ◽  
L. Spina ◽  
P. Jofré

The binary system 16 Cygni is key in studies of the planet-star chemical composition connection, as only one of the stars is known to host a planet. This allows us to better assess the possible influence of planet interactions on the chemical composition of stars that are born from the same cloud and thus should have a similar abundance pattern. In our previous work, we found clear abundance differences for elements with Z ≤ 30 between both components of this system and a trend of these abundances as a function of the condensation temperature (Tc), which suggests a spectral chemical signature related to planet formation. In this work we show that our previous findings are still consistent even if we include more species, such as the volatile N and neutron capture elements (Z > 30). We report a slope with Tc of 1.56 ± 0.24 × 10−5 dex K−1, that is good agreement with our previous work. We also performed some tests using ARES and iSpec to measure automatically the equivalent width and found Tc slopes in reasonable agreement with our results as well. In addition, we determined abundances for Li and Be by spectral synthesis, finding that 16 Cyg A is richer not only in Li but also in Be, when compared to its companion. This may be evidence of planet engulfment, indicating that the Tc trend found in this binary system may be a chemical signature of planet accretion in the A component, rather than an imprint of the giant planet rocky core formation on 16 Cyg B.


Sign in / Sign up

Export Citation Format

Share Document