scholarly journals Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum

2021 ◽  
Author(s):  
Georgi K. Marinov ◽  
Alexandro E. Trevino ◽  
Tingting Xiang ◽  
Anshul Kundaje ◽  
Arthur R. Grossman ◽  
...  

AbstractDinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome of Breviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term ‘dinoTADs’) without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.

Author(s):  
Georgi K. Marinov ◽  
Alexandro E. Trevino ◽  
Tingting Xiang ◽  
Anshul Kundaje ◽  
Arthur R. Grossman ◽  
...  

AbstractDinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state, are not packaged by histones, and contain genes organized into polycistronic arrays, with minimal transcriptional regulation. We analyze the 3D genome of Breviolum minutum, and find large topological domains without chromatin loops, demarcated by convergent gene array boundaries (“dinoTADs). Transcriptional inhibition degrades dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Qingjiao Li ◽  
Harianto Tjong ◽  
Xiao Li ◽  
Ke Gong ◽  
Xianghong Jasmine Zhou ◽  
...  

Abstract Background Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome’s organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Results Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Conclusions Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.


2016 ◽  
Author(s):  
Charalampos Lazaris ◽  
Stephen Kelly ◽  
Panagiotis Ntziachristos ◽  
Iannis Aifantis ◽  
Aristotelis Tsirigos

AbstractBackgroundChromatin conformation capture techniques have evolved rapidly over the last few years and have provided new insights into genome organization at an unprecedented resolution. Analysis of Hi-C data is complex and computationally intensive involving multiple tasks and requiring robust quality assessment. This has led to the development of several tools and methods for processing Hi-C data. However, most of the existing tools do not cover all aspects of the analysis and only offer few quality assessment options. Additionally, availability of a multitude of tools makes scientists wonder how these tools and associated parameters can be optimally used, and how potential discrepancies can be interpreted and resolved. Most importantly, investigators need to be ensured that slight changes in parameters and/or methods do not affect the conclusions of their studies.ResultsTo address these issues (compare, explore and reproduce), we introduce HiC-bench, a configurable computational platform for comprehensive and reproducible analysis of Hi-C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as alignment, filtering, contact matrix generation and normalization, identification of topological domains, scoring and annotation of specific interactions using both published tools and our own. We have also embedded various tasks that perform quality assessment and visualization. HiC-bench is implemented as a data flow platform with an emphasis on analysis reproducibility. Additionally, the user can readily perform parameter exploration and comparison of different tools in a combinatorial manner that takes into account all desired parameter settings in each pipeline task. This unique feature facilitates the design and execution of complex benchmark studies that may involve combinations of multiple tool/parameter choices in each step of the analysis. To demonstrate the usefulness of our platform, we performed a comprehensive benchmark of existing and new TAD callers exploring different matrix correction methods, parameter settings and sequencing depths. Users can extend our pipeline by adding more tools as they become available.ConclusionsHiC-bench consists an easy-to-use and extensible platform for comprehensive analysis of Hi-C datasets. We expect that it will facilitate current analyses and help scientists formulate and test new hypotheses in the field of three-dimensional genome organization.


2003 ◽  
Vol 771 ◽  
Author(s):  
Pavel I. Lazarev ◽  
Michael V. Paukshto ◽  
Elena N. Sidorenko

AbstractWe report a new method of Thin Crystal Film deposition. In the present paper we describe the method of crystallization, structure, and optical properties of Bisbenzimidazo[2,1-a:1',2',b']anthra[2,1,9-def:6,5,10-d'e'f']-diisoquinoline-6,9-dion (mixture with cis-isomer) (abbreviated DBI PTCA) sulfonation product. The Thin Crystal Film has a thickness of 200-1000 nm, with anisotropic optical properties such as refraction and absorption indices. X-ray diffraction data evidences a lyotropic liquid crystalline state in liquid phase and crystalline state in solid film. Anisotropic optical properties of the film make it useful in optical devices, e.g. liquid crystal displays.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1302
Author(s):  
Younggi Hong ◽  
Munju Goh

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.


2010 ◽  
Vol 21 (2) ◽  
pp. 254-265 ◽  
Author(s):  
Osamu Iwasaki ◽  
Atsunari Tanaka ◽  
Hideki Tanizawa ◽  
Shiv I.S. Grewal ◽  
Ken-ichi Noma

The eukaryotic genome is a complex three-dimensional entity residing in the nucleus. We present evidence that Pol III–transcribed genes such as tRNA and 5S rRNA genes can localize to centromeres and contribute to a global genome organization. Furthermore, we find that ectopic insertion of Pol III genes into a non-Pol III gene locus results in the centromeric localization of the locus. We show that the centromeric localization of Pol III genes is mediated by condensin, which interacts with the Pol III transcription machinery, and that transcription levels of the Pol III genes are negatively correlated with the centromeric localization of Pol III genes. This centromeric localization of Pol III genes initially observed in interphase becomes prominent during mitosis, when chromosomes are condensed. Remarkably, defective mitotic chromosome condensation by a condensin mutation, cut3-477, which reduces the centromeric localization of Pol III genes, is suppressed by a mutation in the sfc3 gene encoding the Pol III transcription factor TFIIIC subunit, sfc3-1. The sfc3-1 mutation promotes the centromeric localization of Pol III genes. Our study suggests there are functional links between the process of the centromeric localization of dispersed Pol III genes, their transcription, and the assembly of condensed mitotic chromosomes.


Sign in / Sign up

Export Citation Format

Share Document