scholarly journals Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

2019 ◽  
Vol 16 (4) ◽  
pp. 311-314 ◽  
Author(s):  
Yue Deng ◽  
Feng Bao ◽  
Qionghai Dai ◽  
Lani F. Wu ◽  
Steven J. Altschuler
2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


Author(s):  
Francisco Avila Cobos ◽  
José Alquicira-Hernandez ◽  
Joseph Powell ◽  
Pieter Mestdagh ◽  
Katleen De Preter

AbstractMany computational methods to infer cell type proportions from bulk transcriptomics data have been developed. Attempts comparing these methods revealed that the choice of reference marker signatures is far more important than the method itself. However, a thorough evaluation of the combined impact of data transformation, pre-processing, marker selection, cell type composition and choice of methodology on the results is still lacking.Using different single-cell RNA-sequencing (scRNA-seq) datasets, we generated hundreds of pseudo-bulk mixtures to evaluate the combined impact of these factors on the deconvolution results. Along with methods to perform deconvolution of bulk RNA-seq data we also included five methods specifically designed to infer the cell type composition of bulk data using scRNA-seq data as reference.Both bulk and single-cell deconvolution methods perform best when applied to data in linear scale and the choice of normalization can have a dramatic impact on the performance of some, but not all methods. Overall, single-cell methods have comparable performance to the best performing bulk methods and bulk methods based on semi-supervised approaches showed higher error and lower correlation values between the computed and the expected proportions. Moreover, failure to include cell types in the reference that are present in a mixture always led to substantially worse results, regardless of any of the previous choices. Taken together, we provide a thorough evaluation of the combined impact of the different factors affecting the computational deconvolution task across different datasets and propose general guidelines to maximize its performance.


2019 ◽  
Author(s):  
Evan Appleton ◽  
Noushin Mehdipour ◽  
Tristan Daifuku ◽  
Demarcus Briers ◽  
Iman Haghighi ◽  
...  

AbstractMulti-cellular organisms originate from a single cell, ultimately giving rise to mature organisms of heterogeneous cell type composition in complex structures. Recent work in the areas of stem cell biology and tissue engineering have laid major groundwork in the ability to convert certain types of cells into other types, but there has been limited progress in the ability to control the morphology of cellular masses as they grow. Contemporary approaches to this problem have included the use of artificial scaffolds, 3D bioprinting, and complex media formulations, however, there are no existing approaches to controlling this process purely through genetics and from a single-cell starting point. Here we describe a computer-aided design approach for designing recombinase-based genetic circuits for controlling the formation of multi-cellular masses into arbitrary shapes in human cells.


2021 ◽  
Author(s):  
Belinda Phipson ◽  
Choon Boon Sim ◽  
Enzo R. Porrello ◽  
Alex W Hewitt ◽  
Joseph Powell ◽  
...  

Single cell RNA Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. To date, there are more than a thousand software packages that have been developed to analyse scRNA-seq data. These focus predominantly on visualization, dimensionality reduction and cell type identification. Single cell technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments which has not been possible to address with bulk RNA-seq data is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportions estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. We present propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. The propeller method is publicly available in the open source speckle R package (https://github.com/Oshlack/speckle).


2018 ◽  
Author(s):  
Yuqi Tan ◽  
Patrick Cahan

Single cell RNA-Seq has emerged as a powerful tool in diverse applications, ranging from determining the cell-type composition of tissues to uncovering the regulators of developmental programs. A near-universal step in the analysis of single cell RNA-Seq data is to hypothesize the identity of each cell. Often, this is achieved by finding cells that express combinations of marker genes that had previously been implicated as being cell-type specific, an approach that is not quantitative and does not explicitly take advantage of other single cell RNA-Seq studies. Here, we describe our tool, SingleCellNet, which addresses these issues and enables the classification of query single cell RNA-Seq data in comparison to reference single cell RNA-Seq data. SingleCellNet compares favorably to other methods, and it is notably able to make sensitive and accurate classifications across platforms and species. We demonstrate how SingleCellNet can be used to classify previously undetermined cells, and how it can be used to assess the outcome of cell fate engineering experiments.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 750
Author(s):  
Olukayode A. Sosina ◽  
Matthew N. Tran ◽  
Kristen R. Maynard ◽  
Ran Tao ◽  
Margaret A. Taub ◽  
...  

Background: Statistical deconvolution strategies have emerged over the past decade to estimate the proportion of various cell populations in homogenate tissue sources like brain using gene expression data. However, no study has been undertaken to assess the extent to which expression-based and DNAm-based cell type composition estimates agree. Results: Using estimated neuronal fractions from DNAm data, from the same brain region (i.e., matched) as our bulk RNA-Seq dataset, as proxies for the true unobserved cell-type fractions (i.e., as the gold standard), we assessed the accuracy (RMSE) and concordance (R2) of four reference-based deconvolution algorithms: Houseman, CIBERSORT, non-negative least squares (NNLS)/MIND, and MuSiC. We did this for two cell-type populations - neurons and non-neurons/glia - using matched single nuclei RNA-Seq and mismatched single cell RNA-Seq reference datasets. With the mismatched single cell RNA-Seq reference dataset, Houseman, MuSiC, and NNLS produced concordant (high correlation; Houseman R2 = 0.51, 95% CI [0.39, 0.65]; MuSiC R2 = 0.56, 95% CI [0.43, 0.69]; NNLS R2 = 0.54, 95% CI [0.32, 0.68]) but biased (high RMSE, >0.35) neuronal fraction estimates. CIBERSORT produced more discordant (moderate correlation; R2 = 0.25, 95% CI [0.15, 0.38]) neuronal fraction estimates, but with less bias (low RSME, 0.09). Using the matched single nuclei RNA-Seq reference dataset did not eliminate bias (MuSiC RMSE = 0.17). Conclusions: Our results together suggest that many existing RNA deconvolution algorithms estimate the RNA composition of homogenate tissue, e.g. the amount of RNA attributable to each cell type, and not the cellular composition, which relates to the underlying fraction of cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Travis S. Johnson ◽  
Shunian Xiang ◽  
Bryan R. Helm ◽  
Zachary B. Abrams ◽  
Peter Neidecker ◽  
...  

Abstract Single-cell RNA sequencing (scRNA-seq) resolves heterogenous cell populations in tissues and helps to reveal single-cell level function and dynamics. In neuroscience, the rarity of brain tissue is the bottleneck for such study. Evidence shows that, mouse and human share similar cell type gene markers. We hypothesized that the scRNA-seq data of mouse brain tissue can be used to complete human data to infer cell type composition in human samples. Here, we supplement cell type information of human scRNA-seq data, with mouse. The resulted data were used to infer the spatial cellular composition of 3702 human brain samples from Allen Human Brain Atlas. We then mapped the cell types back to corresponding brain regions. Most cell types were localized to the correct regions. We also compare the mapping results to those derived from neuronal nuclei locations. They were consistent after accounting for changes in neural connectivity between regions. Furthermore, we applied this approach on Alzheimer’s brain data and successfully captured cell pattern changes in AD brains. We believe this integrative approach can solve the sample rarity issue in the neuroscience.


2019 ◽  
Vol 20 (S19) ◽  
Author(s):  
Yue Cao ◽  
Yingxin Lin ◽  
John T. Ormerod ◽  
Pengyi Yang ◽  
Jean Y.H. Yang ◽  
...  

Abstract Background Differences in cell-type composition across subjects and conditions often carry biological significance. Recent advancements in single cell sequencing technologies enable cell-types to be identified at the single cell level, and as a result, cell-type composition of tissues can now be studied in exquisite detail. However, a number of challenges remain with cell-type composition analysis – none of the existing methods can identify cell-type perfectly and variability related to cell sampling exists in any single cell experiment. This necessitates the development of method for estimating uncertainty in cell-type composition. Results We developed a novel single cell differential composition (scDC) analysis method that performs differential cell-type composition analysis via bootstrap resampling. scDC captures the uncertainty associated with cell-type proportions of each subject via bias-corrected and accelerated bootstrap confidence intervals. We assessed the performance of our method using a number of simulated datasets and synthetic datasets curated from publicly available single cell datasets. In simulated datasets, scDC correctly recovered the true cell-type proportions. In synthetic datasets, the cell-type compositions returned by scDC were highly concordant with reference cell-type compositions from the original data. Since the majority of datasets tested in this study have only 2 to 5 subjects per condition, the addition of confidence intervals enabled better comparisons of compositional differences between subjects and across conditions. Conclusions scDC is a novel statistical method for performing differential cell-type composition analysis for scRNA-seq data. It uses bootstrap resampling to estimate the standard errors associated with cell-type proportion estimates and performs significance testing through GLM and GLMM models. We have made this method available to the scientific community as part of the scdney package (Single Cell Data Integrative Analysis) R package, available from https://github.com/SydneyBioX/scdney.


2020 ◽  
Author(s):  
Benjamin Chidester ◽  
Tianming Zhou ◽  
Jian Ma

AbstractSpatial transcriptomics technologies promise to reveal spatial relationships of cell-type composition in complex tissues. However, the development of computational methods that capture the unique properties of single-cell spatial transcriptome data to unveil cell identities remains a challenge. Here, we report SpiceMix, a new probabilistic model that enables effective joint analysis of spatial information and gene expression of single cells based on spatial transcriptome data. Both simulation and real data evaluations demonstrate that SpiceMix consistently improves upon the inference of the intrinsic cell types compared with existing approaches. As a proof-of-principle, we use SpiceMix to analyze single-cell spatial transcriptome data of the mouse primary visual cortex acquired by seqFISH+ and STARmap. We find that SpiceMix can improve cell identity assignments and uncover potentially new cell subtypes. SpiceMix is a generalizable framework for analyzing spatial transcriptome data that may provide critical insights into the cell-type composition and spatial organization of cells in complex tissues.


2019 ◽  
Author(s):  
Roger Pique-Regi ◽  
Roberto Romero ◽  
Adi L.Tarca ◽  
Edward D. Sendler ◽  
Yi Xu ◽  
...  

AbstractMore than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell) and with preterm labor (macrophage, monocyte, and activated T-cell). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.One sentence summaryThe common molecular pathway of parturition for both term and preterm spontaneous labor is characterized using single cell gene expression analysis of the human placenta.


Sign in / Sign up

Export Citation Format

Share Document