scholarly journals Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
V. Templier ◽  
T. Livache ◽  
S. Boisset ◽  
M. Maurin ◽  
S. Slimani ◽  
...  
Pathology ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 88-91 ◽  
Author(s):  
Gary N. McAuliffe ◽  
Mary Bilkey ◽  
Sally A. Roberts

Mycoses ◽  
2018 ◽  
Vol 61 (11) ◽  
pp. 837-844 ◽  
Author(s):  
Fahimeh Piri ◽  
Ali Zarei Mahmoudabadi ◽  
Ali Ronagh ◽  
Bahram Ahmadi ◽  
Koichi Makimura ◽  
...  

2020 ◽  
Vol 497 (3) ◽  
pp. 2839-2854 ◽  
Author(s):  
Boyuan Liu ◽  
Volker Bromm

ABSTRACT We construct a theoretical framework to study Population III (Pop III) star formation in the post-reionization epoch (z ≲ 6) by combining cosmological simulation data with semi-analytical models. We find that due to radiative feedback (i.e. Lyman–Werner and ionizing radiation) massive haloes ($M_{\rm halo}\gtrsim 10^{9}\ \rm M_{\odot }$) are the major (≳90 per cent) hosts for potential Pop III star formation at z ≲ 6, where dense pockets of metal-poor gas may survive to form Pop III stars, under inefficient mixing of metals released by supernovae. Metal mixing is the key process that determines not only when Pop III star formation ends, but also the total mass, MPopIII, of active Pop III stars per host halo, which is a crucial parameter for direct detection and identification of Pop III hosts. Both aspects are still uncertain due to our limited knowledge of metal mixing during structure formation. Current predictions range from early termination at the end of reionization (z ∼ 5) to continuous Pop III star formation extended to z = 0 at a non-negligible rate $\sim \!10^{-7}\ \rm M_{\odot }\ yr^{-1}\ Mpc^{-3}$, with $M_{\rm PopIII}\sim 10^{3}-10^{6}\ \rm M_{\odot }$. This leads to a broad range of redshift limits for direct detection of Pop III hosts, zPopIII ∼ 0.5–12.5, with detection rates $\lesssim 0.1-20\ \rm arcmin^{-2}$, for current and future space telescopes (e.g. HST, WFIRST, and JWST). Our model also predicts that the majority (≳90 per cent) of the cosmic volume is occupied by metal-free gas. Measuring the volume-filling fractions of this metal-free phase can constrain metal-mixing parameters and Pop III star formation.


2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Alexander G. Shaw ◽  
Manasi Majumdar ◽  
Catherine Troman ◽  
Áine O’Toole ◽  
Blossom Benny ◽  
...  

ABSTRACT Global poliovirus surveillance involves virus isolation from stool and environmental samples, intratypic differential (ITD) by PCR, and sequencing of the VP1 region to distinguish vaccine (Sabin), vaccine-derived, and wild-type polioviruses and to ensure an appropriate response. This cell culture algorithm takes 2 to 3 weeks on average between sample receipt and sequencing. Direct detection of viral RNA using PCR allows faster detection but has traditionally faced challenges related to poor sensitivity and difficulties in sequencing common samples containing poliovirus and enterovirus mixtures. We present a nested PCR and nanopore sequencing protocol that allows rapid (<3 days) and sensitive direct detection and sequencing of polioviruses in stool and environmental samples. We developed barcoded primers and a real-time analysis platform that generate accurate VP1 consensus sequences from multiplexed samples. The sensitivity and specificity of our protocol compared with those of cell culture were 90.9% (95% confidence interval, 75.7% to 98.1%) and 99.2% (95.5% to 100.0%) for wild-type 1 poliovirus, 92.5% (79.6% to 98.4%) and 98.7% (95.4% to 99.8%) for vaccine and vaccine-derived serotype 2 poliovirus, and 88.3% (81.2% to 93.5%) and 93.2% (88.6% to 96.3%) for Sabin 1 and 3 poliovirus alone or in mixtures when tested on 155 stool samples in Pakistan. Variant analysis of sequencing reads also allowed the identification of polioviruses and enteroviruses in artificial mixtures and was able to distinguish complex mixtures of polioviruses in environmental samples. The median identity of consensus nanopore sequences with Sanger or Illumina sequences from the same samples was >99.9%. This novel method shows promise as a faster and safer alternative to cell culture for the detection and real-time sequencing of polioviruses in stool and environmental samples.


Sign in / Sign up

Export Citation Format

Share Document