scholarly journals Spatiotemporal Variability in Phosphorus Species in the Pearl River Estuary: Influence of the River Discharge

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ruihuan Li ◽  
Jie Xu ◽  
Xiangfu Li ◽  
Zhen Shi ◽  
Paul J. Harrison
2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3245
Author(s):  
Lixia Niu ◽  
Pieter van Gelder ◽  
Xiangxin Luo ◽  
Huayang Cai ◽  
Tao Zhang ◽  
...  

The Pearl River estuary is an ecologically dynamic region located in southern China that experiences strong gradients in its biogeochemical properties. This study examined the seasonality of nutrient dynamics, identified related environmental responses, and evaluated how river discharge regulated nutrient sink and source. The field investigation showed significant differences of dissolved nutrients with seasons and three zones of the estuary regarding the estuarine characteristics. Spatially, nutrients exhibited a clear decreasing trend along the salinity gradient; temporally, their levels were obviously higher in summer than other seasons. The aquatic environment was overall eutrophic, as a result of increased fluxes of nitrogen and silicate. This estuary was thus highly sensitive to nutrient enrichment and related pollution of eutrophication. River discharge, oceanic current, and atmospheric deposition distinctly influenced the nutrient status. These factors accordingly may influence phytoplankton that are of importance in coastal ecosystems. Phytoplankton (in terms of chlorophyll) was potentially phosphate limited, which then more frequently resulted in nutrient pollution and blooms. Additionally, the nutrient sources were implied according to the cause–effect chains between nutrients, hydrology, and chlorophyll, identified by the PCA-generated quantification. Nitrogen was constrained by marine-riverine waters and their mutual increase-decline trend, and a new source was supplemented along the transport from river to sea, while a different source of terrestrial emission from coastal cities contributed to phosphate greatly.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2080 ◽  
Author(s):  
Huang ◽  
Hu ◽  
Li ◽  
Wang ◽  
Xu ◽  
...  

A validated hydrodynamic-biogeochemical model was applied to investigate the effects of physical forcing (i.e., river discharge, winds, and tides) on the summertime dissolved oxygen (DO) dynamics and hypoxia (DO < 3 mg L−1) in the Pearl River estuary (PRE), based on a suite of model sensitivity experiments. Compared with the base model run in 2006 (a wet year), the simulated hypoxic area in the moderate year (with 75% of river discharge of the base run) and the dry year scenario (with 50% of river discharge of the base run) was reduced by ~30% and ~60%, respectively. This is because under the lower river discharge levels, less particulate organic matter was delivered to the estuary that subsequently alleviated the oxygen demand at the water–sediment interface, and in the meantime, the water stratification strength was decreased, which facilitated the vertical diffusion of DO. Regarding the effect of winds, the highly varying and intermittent strong winds had a significant impact on the replenishment of bottom DO by disrupting water stratification and thus inhibiting the development of hypoxia. Sensitivity experiments showed that the hypoxic area and volume were both remarkably increased in the low wind scenario (with a bottom hypoxic zone extending from the Modaomen sub-estuary to the western shoal in Lingdingyang Bay), whereas hypoxia was almost absent in the strong wind scenario. The DO budget indicated that winds altered the bottom DO mostly by affecting the DO flux due to vertical diffusion and horizontal advection, and had a limited influence on the DO consumption processes. Moreover, the DO concentration exhibited remarkable fluctuations over the spring-neap tidal cycles due to the significant differences in vertical diffusion. The results of a tide-sensitivity experiment indicated that without tide forcing, most of the shallow areas (average water depth < 5 m) in the PRE experienced severe and persistent hypoxia. The tides mainly enhanced mixing in the shallow areas, which led to higher vertical diffusion and enhanced replenishment of bottom DO.


2021 ◽  
Vol 9 (7) ◽  
pp. 763
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen ◽  
Ruirui Hu

Spawning grounds are important areas for fish survival and reproduction, and play a key role in the supplement of fishery resources. This study investigated environmental effects on the spatiotemporal variability of spawning ground in the Pearl River Estuary (PRE), China, using the generalized additive model (GAM), based on satellite remote sensing (sea surface temperature (SST), chlorophyll-a concentration (Chl-a), sea surface salinity (SSS), depth), and in situ observations. Results showed that 39.8% of the total variation in fish egg density was explained by these factors. Among them, the most important factor was SST, accounting for 14.3%, followed by Depth, SSS, and Chl-a, with contributions of 9.7%, 8.5%, and 7.3%, respectively. Spawning grounds in the PRE were mainly distributed in the waters with SST of 22 °C, depth of 30–50 m, SSS of 16–35 ‰, and Chl-a of 6–15 mg/m3. From spring to summer, the spawning ground moved from the outlet of the PRE to the east. The distribution of the spawning ground in the PRE was mainly affected by the Pearl River Plume (PRP), Guangdong Coastal Current (GCC), and monsoons in this area.


2020 ◽  
Author(s):  
Danna Zeng ◽  
Lixia Niu ◽  
Qingshu Yang

&lt;p&gt;Based on the field efforts in 2016 during a dry season (30 Nov-6 Dec) in the Pearl River Estuary (PRE)&amp;#65292;south China, this study aimed to investigate the tidal changes of phytoplankton variability (in terms of chlorophyll a) and their responses to multiple environmental factors.Time series analysis&amp;#65292;principal component analysis (PCA)&amp;#65292;Pearson correlation analysis, and Delft3D model were carried out. A significant difference was found in the tidal variations of dissolved nutrients, covering both a spring tide and neap tide . Moderate differences in salinity and suspended sediment played different roles in the nitrogen and phosphate. The negative correlations of salinity and nitrogen ecologically implied a stronger diluting-mixing effect than that of phosphate, which has a large impact on the water quality. The adsorption of phosphorus by sediment particles was stronger than that of nitrogen. Nitrogen was mainly contributed by river discharge. DIN was constrained by tide-river dynamics and their mutual increase-decline trend, and a new source was supplemented along the transport from river to sea. The weak correlation between PO&lt;sub&gt;4&lt;/sub&gt;&amp;#160;and salinity suggested a different source contribution of the terrestrial emission from coastal cities; the contribution of river discharge was less compared with nitrogen.&amp;#160;Over site, P-limitation&amp;#160;was detected and was more frequently resulted in eutrophication and even bloom events.&amp;#160;Characterizing the relationships among chlorophyll a, nutrients, and hydrological factors enables us to develop effective ecosystem management strategies, and to design studies more focused on ecological health and function.&lt;/p&gt;


2014 ◽  
Vol 81 (2) ◽  
pp. 240-250 ◽  
Author(s):  
Qingyun Nan ◽  
Tiegang Li ◽  
Jinxia Chen ◽  
Rajiv Nigma ◽  
Xinke Yu ◽  
...  

AbstractA sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated with the high TOC and negative δ13Corg. These results indicated high river runoff in the PRE area. Peak river discharge occurred during the periods 1900–1750, 1500–1600, 1400–1200, 1000–900 and 750–600 cal yr BP. The main changes recorded in grain-size distributions, TOC contents, and δ13Corg variations appear to be directly related to monsoon precipitation in the sediment source area. An increased East Asian summer monsoon rainfall (EASM) and/or an enhanced East Asian winter monsoon rainfall could result in the increasing of monsoon rainfall. Typhoon related rainfalls could act as positive influence on precipitation levels. The study of the correlations between the rainfall records and ENSO activities revealed a close relationship between the monsoon rainfall in the PRE and the tropical Pacific variations. The frequent occurrence of ENSO might result in the southern migration of the EASM rain belt and lead to more typhoon-derived rainfall in the PRD during the late Holocene.


Sign in / Sign up

Export Citation Format

Share Document