scholarly journals In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Alberto Aguilar ◽  
Cyril Mauclair ◽  
Nicolas Faure ◽  
Jean-Philippe Colombier ◽  
Razvan Stoian
2014 ◽  
Vol 10 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
X. Faïn ◽  
J. Chappellaz ◽  
R. H. Rhodes ◽  
C. Stowasser ◽  
T. Blunier ◽  
...  

Abstract. We present high-resolution measurements of carbon monoxide (CO) concentrations from a shallow ice core of the North Greenland Eemian Ice Drilling project (NEEM-2011-S1). An optical-feedback cavity-enhanced absorption spectrometer (OF-CEAS) coupled to a continuous melter system performed continuous, online analysis during a four-week measurement campaign. This analytical setup generated stable measurements of CO concentrations with an external precision of 7.8 ppbv (1σ), based on repeated analyses of equivalent ice core sections. However, this first application of this measurement technique suffered from a poorly constrained procedural blank of 48 ± 25 ppbv and poor accuracy because an absolute calibration was not possible. The NEEM-2011-S1 CO record spans 1800 yr and the long-term trends within the most recent section of this record (i.e., post 1700 AD) resemble the existing discrete CO measurements from the Eurocore ice core. However, the CO concentration is highly variable (75–1327 ppbv range) throughout the ice core with high frequency (annual scale), high amplitude spikes characterizing the record. These CO signals are too abrupt and rapid to reflect atmospheric variability and their prevalence largely prevents interpretation of the record in terms of atmospheric CO variation. The abrupt CO spikes are likely the result of in situ production occurring within the ice itself, although the unlikely possibility of CO production driven by non-photolytic, fast kinetic processes within the continuous melter system cannot be excluded. We observe that 68% of the CO spikes are observed in ice layers enriched with pyrogenic aerosols. Such aerosols, originating from boreal biomass burning emissions, contain organic compounds, which may be oxidized or photodissociated to produce CO within the ice. However, the NEEM-2011-S1 record displays an increase of ~0.05 ppbv yr−1 in baseline CO level prior to 1700 AD (129 m depth) and the concentration remains elevated, even for ice layers depleted in dissolved organic carbon (DOC). Thus, the processes driving the likely in situ production of CO within the NEEM ice may involve multiple, complex chemical pathways not all related to past fire history and require further investigation.


2020 ◽  
Author(s):  
Diana Vladimirova ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Stanislav Kutuzov ◽  
Vladimir Mikhalenko

<p>Methane (CH<sub>4</sub>) is the third most powerful greenhouse gas. However, its warming potential is two orders of magnitude higher than of carbon dioxide and its residence time in the atmosphere is only 9.1 ± 0.9 years. It makes CH<sub>4</sub> a good indicator of rapid climate variations both under natural conditions and due to the anthropogenic influence.</p><p>The Elbrus ice core was drilled in 2009 on the Western Plato (43°20’53.9’’N, 42°25’36.0’’E) at elevation 5115 m a.s.l. It is 182 m long and is dated back to 280 ± 400 CE (Common Era). The CH<sub>4</sub> mixing ratios were analyzed using a continuous flow analysis (CFA) system paired with optical-feedback cavity-enhanced absorption spectroscopy. The measurements campaign was organized at Institut des Géosciences de l'Environnement (IGE), Grenoble, France. This is a first high-resolution mid-latitude CH<sub>4</sub> record. The record aims to better constrain the past evolution of mid-latitude methane sources.</p><p>Here we present preliminary results of the methane concentration measurements of the Elbrus ice core in high-resolution (CFA CH<sub>4</sub> record). We observe in situ production (max level 2900 ppb) and a baseline. We inspect a potential origin of the multiple spikes in the high-resolution record. Supposedly, either an in-situ production in the dust-rich layers occurred or a gas dissolution in the melt layers took place. However, the possibility of in-situ production during continuous gas extraction has to be further studied. The identified melt layers can serve as an indicator of interrupted stable water isotopic signal and may be supportive in the regional temperature reconstructions based on the Elbrus ice core record. A cleaned off the spikes record is inspected for the natural variability of the CH<sub>4</sub> baseline concentration related to the short-term climate and methane emissions variability.</p>


2013 ◽  
Vol 9 (3) ◽  
pp. 2817-2857 ◽  
Author(s):  
X. Faïn ◽  
J. Chappellaz ◽  
R. H. Rhodes ◽  
C. Stowasser ◽  
T. Blunier ◽  
...  

Abstract. We present high-resolution measurements of carbon monoxide (CO) concentrations from continuous analysis of a shallow ice core from the North Greenland Eemian Ice Drilling project (NEEM-2011-S1). An Optical Feedback – Cavity Enhanced Absorption Spectrometer (OF-CEAS) was coupled to a continuous melter system during a 4-week laboratory-based measurement campaign. This analytical setup generates highly stable measurements of CO concentrations with an external precision of 7.8 ppbv (1 sigma) based on a comparison of replicate cores. The NEEM-2011-S1 CO record spans 1800 yr and exhibits highly variable concentrations at the scale of annual layers, ranging from 75 to 1327 ppbv. The most recent section of this record (i.e. since 1700 AD) agrees with existing discrete CO measurements from the Eurocore ice core and the deep NEEM firn. However, it is difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitude spikes in the data. 68% of the elevated CO spikes are observed in ice layers enriched with pyrogenic aerosols. Such aerosols, originating from boreal biomass burning emissions, contain organic compounds, which can be oxidized or photodissociated to produce CO in-situ. We suggest that elevated CO concentration features could present a new integrative proxy for past biomass burning history. Furthermore, the NEEM-2011-S1 record reveals an increase in baseline CO level prior to 1700 AD (129 m depth), with the concentration remaining high even for ice layers depleted in dissolved organic carbon (DOC). Overall, the processes driving in-situ production of CO within the NEEM ice are complex and may involve multiple chemical pathways.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2018 ◽  
Author(s):  
Grigore Moldovan ◽  
Wolfgang Joachimi ◽  
Guillaume Boetsch ◽  
Jörg Jatzkowski ◽  
Frank Altman

Abstract This work presents advanced resistance mapping techniques based on Scanning Electron Microscopy (SEM) with nanoprobing systems and the related embedded electronics. Focus is placed on recent advances to reduce noise and increase speed, such as integration of dedicated in situ electronics into the nanoprobing platform, as well as an important transition from current-sensitive to voltagesensitive amplification. We show that it is now possible to record resistance maps with a resistance sensitivity in the 10W range, even when the total resistance of the mapped structures is in the range of 100W. A reference structure is used to illustrate the improved performance, and a lowresistance failure case is presented as an example of analysis made possible by these developments.


Author(s):  
Colin F. Wilson ◽  
Thomas Widemann ◽  
Richard Ghail

AbstractIn this paper, originally submitted in answer to ESA’s “Voyage 2050” call to shape the agency’s space science missions in the 2035–2050 timeframe, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Comparing the interior, surface, and atmosphere evolution of Earth, Mars, and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere. This is particularly true in an era where we expect thousands, and then millions, of terrestrial exoplanets to be discovered. Earth and Mars have already dedicated exploration programmes, but our understanding of Venus, particularly of its geology and its history, lags behind. Multiple exploration vehicles will be needed to characterize Venus’ richly varied interior, surface, atmosphere and magnetosphere environments. Between now and 2050 we recommend that ESA launch at least two M-class missions to Venus (in order of priority): a geophysics-focussed orbiter (the currently proposed M5 EnVision orbiter – [1] – or equivalent); and an in situ atmospheric mission (such as the M3 EVE balloon mission – [2]). An in situ and orbital mission could be combined in a single L-class mission, as was argued in responses to the call for L2/L3 themes [3–5]. After these two missions, further priorities include a surface lander demonstrating the high-temperature technologies needed for extended surface missions; and/or a further orbiter with follow-up high-resolution surface radar imaging, and atmospheric and/or ionospheric investigations.


Sign in / Sign up

Export Citation Format

Share Document