scholarly journals The loss of succinate dehydrogenase B expression is frequently identified in hemangioblastoma of the central nervous system

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tae Hoon Roh ◽  
Hyunee Yim ◽  
Jin Roh ◽  
Kyi Beom Lee ◽  
So Hyun Park ◽  
...  
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
Hyunee Yim ◽  
Jin Roh ◽  
Kyi Beom Lee ◽  
...  

Abstract Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2007 ◽  
Vol 177 (4S) ◽  
pp. 454-454
Author(s):  
Nasim Zabihi ◽  
Daniel Silverman ◽  
Veronica Triaca ◽  
Christian O. Twiss ◽  
Cheri Geist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document