scholarly journals Short-term detection of volcanic unrest at Mt. Etna by means of a multi-station warning system

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Salvatore Spampinato ◽  
Horst Langer ◽  
Alfio Messina ◽  
Susanna Falsaperla
Author(s):  
Pierre Masselot ◽  
Fateh Chebana ◽  
Éric Lavigne ◽  
Céline Campagna ◽  
Pierre Gosselin ◽  
...  

The nature of pollutants involved in smog episodes can vary significantly in various cities and contexts and will impact local populations differently due to actual exposure and pre-existing sensitivities for cardiovascular or respiratory diseases. While regulated standards and guidance remain important, it is relevant for cities to have local warning systems related to air pollution. The present paper proposes indicators and thresholds for an air pollution warning system in the metropolitan areas of Montreal and Quebec City (Canada). It takes into account past and current local health impacts to launch its public health warnings for short-term episodes. This warning system considers fine particulate matter (PM2.5) as well as the combined oxidant capacity of ozone and nitrogen dioxide (Ox) as environmental exposures. The methodology used to determine indicators and thresholds consists in identifying extreme excess mortality episodes in the data and then choosing the indicators and thresholds to optimize the detection of these episodes. The thresholds found for the summer were 31 μg/m3 for PM2.5 and 43 ppb for Ox in Montreal, and 32 μg/m3 and 23 ppb in Quebec City. In winter, thresholds found were 25 μg/m3 and 26 ppb in Montreal, and 33 μg/m3 and 21 ppb in Quebec City. These results are in line with different guidelines existing concerning air quality, but more adapted to the cities examined. In addition, a sensitivity analysis is conducted which suggests that Ox is more determinant than PM2.5 in detecting excess mortality episodes.


2015 ◽  
Vol 62 (4) ◽  
pp. 493-510 ◽  
Author(s):  
Vesna Bucevska

The purpose of this paper is to develop an econometric model of early warning system (EWS) for predicting currency crises in EU candidate countries. Using actual quarterly panel data for three EU candidate countries (Croatia, Macedonia and Turkey) in the period January 2005 - June 2010, we estimate a binomial logit model, which accurately predicts potential episodes of outbreak of currency crisis. In addition, we find that real GDP growth rate, participation in an IMF loan program, current account and fiscal balance and short-term external indebtedness are the most significant common predictors of currency crises across EU candidate countries. These results imply implementing policy measures aimed at raising the growth potential of the domestic economies of EU candidate countries, monitoring their short-term external indebtedness, improving their external competitiveness, cutting public spending and increasing the confidence of residents and non-residents in their domestic banking sectors.


2015 ◽  
Vol 304 ◽  
pp. 11-23 ◽  
Author(s):  
Simona Sicali ◽  
Graziella Barberi ◽  
Ornella Cocina ◽  
Carla Musumeci ◽  
Domenico Patanè
Keyword(s):  

2019 ◽  
Vol 177 (2) ◽  
pp. 763-785
Author(s):  
Emilia Nordström ◽  
Savka Dineva ◽  
Erling Nordlund

Abstract Back analysis for evaluation of the merits of the short-term seismic hazard indicators (precursors) used in the mines and their potential application for early warning was carried out for fourteen seismic events that potentially caused damage in Kiirunavaara Mine, Sweden, selected according to our designed criteria. Five short-term hazard indicators: Seismic Activity Rate (SAR), Cumulative Seismic Moment (CSM), Energy Index (EI), Cumulative Apparent Volume (CAV) and Seismic Apparent Stress Frequency (ASF) were tested. The behaviour of the indicators was studied using the parameters of all seismic events within a sphere around the hypocenter location of the analyzed seismic source within one month before the main (damaging) event. The size of the sphere equals the estimated radius of the analyzed seismic source (area of inelastic deformation). mXrap software (Australian Centre for Geomechanics) was used for data visualization, manipulation, analysis and extraction. The results from the main analysis showed a good agreement between the expected and actual behaviour of the SAR, CSM and CAV indicators. In overall, CSM and CAV ranked the highest positive/expected behaviour followed by SAR (Table 3). The EI and ASF ranked lowest and showed to be sensitive to the number of events within the source sphere. The rate of false warnings and missed warnings was also investigated for the 25 days-long period before the damaging events. A similar trend was observed as for the main analysed event. The results from this study can be used for further improvement of the short-term hazard estimations and early warning system in deep underground mines.


2002 ◽  
Vol 9 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Michael Frech ◽  
Frank Holzäpfel ◽  
Thomas Gerz ◽  
Jens Konopka

2018 ◽  
Vol 7 (4.38) ◽  
pp. 1310
Author(s):  
Prof. Dr. Ir Vinesh Thiruchelvam ◽  
Mbau Stella Nyambura

The cost of climate change has increased phenomenally in recent years. Therefore, understanding climate change and its impacts, that are likely to get worse and worse into the future, gives us the ability to predict scenarios and plan for them. Flash floods, which are a common result of climate change, follow increased precipitation which then increases risk and associated vulnerability due to the unpredictable rainfall patterns. Developing countries suffer grave consequences in the event that weather disasters strike because they have the least adaptive capacity. At the equator where the hot days are hotter and winds carrying rainfall move faster, Kenya’s Tana River County is noted for its vulnerability towards flash floods. Additionally, this county and others that are classified as rural areas in Kenya do not receive short term early warnings for floods. This county was therefore selected as the study area for its vulnerability. The aim of the study is therefore to propose a flash flood early warning system framework that delivers short term early warnings. Using questionnaires, information about the existing warning system will be collected and analyzed using SPSS. The results will be used to interpret the relationships between variables of the study, with a particular interest in the moderation effect in order to confirm that the existing system can be modified; that is, if the moderation effect is confirmed.       


2018 ◽  
Vol 7 (4.38) ◽  
pp. 810
Author(s):  
Prof. Dr. Ir Vinesh Thiruchelvam ◽  
Mbau Stella Nyambura

The cost of climate change has increased phenomenally in recent years. Therefore, understanding climate change and its impacts, that are likely to get worse and worse into the future, gives us the ability to predict scenarios and plan for them. Flash floods, which are a common result of climate change, follow increased precipitation which then increases risk and associated vulnerability due to the unpredictable rainfall patterns. Developing countries suffer grave consequences in the event that weather disasters strike because they have the least adaptive capacity. At the equator where the hot days are hotter and winds carrying rainfall move faster, Kenya’s Tana River County is noted for its vulnerability towards flash floods. Additionally, this county and others that are classified as rural areas in Kenya do not receive short term early warnings for floods. This county was therefore selected as the study area for its vulnerability. The aim of the study is therefore to propose a flash flood early warning system framework that delivers short term early warnings. Using questionnaires, information about the existing warning system will be collected and analyzed using SPSS. The results will be used to interpret the relationships between variables of the study, with a particular interest in the moderation effect in order to confirm that the existing system can be modified; that is, if the moderation effect is confirmed.   


2021 ◽  
Author(s):  
Yanbing Li ◽  
Jingtao Wu ◽  
Jiayuan Hao ◽  
Qiujun Dou ◽  
Hao Xiang ◽  
...  

Abstract Few studies have estimated the nonlinear association of ambient temperature with the risk of influenza. We therefore applied a time-series analysis to explore the short-term effect of ambient temperature on the incidence of influenza in Wuhan, China. Daily influenza cases were collected from Hubei Provincial Center for Disease Control and Prevention (Hubei CDC) from January 1st, 2014 to December 31st, 2017. The meteorological and daily pollutant data was obtained from the Hubei Meteorological Service Center and National Air Quality Monitoring Stations, respectively. We used a generalized additive model (GAM) coupled with the distributed lag nonlinear model (DLNM) to explore the exposure-lag-response relationship between the short-term risk of influenza and daily average ambient temperature. Analyses were also performed to assess the extreme cold and hot temperature effects. We observed that the ambient temperature was statistically significant, and the exposure-response curve is approximately S-shaped, with a peak observed at 23.57℃. The single-day lag curve showed that extreme hot and cold temperatures were both significantly associated with influenza. The extreme hot temperature has an acute effect on influenza, with the most significant effect observed at lag 0-1. The extreme cold temperature has a relatively smaller effect but lasts longer, with the effect exerted continuously during a lag of 2-4 days. Our study found significant nonlinear and delayed associations between ambient temperature and the incidence of influenza. Our finding contributes to the establishment of an early warning system for airborne infectious diseases.


Flooding is a national disaster that often occurs in Indonesia. Flood disasters require long-term and short-term action. In the short-term system, the government currently emphasizes state and private institutions to jointly reduce flood victims by developing a flood disaster early warning system. Therefore, this study discusses the making of flood early warning information systems by utilizing GSM communication systems as a means of communication between clients and servers. The GSM communication service used is the SMS Gateway. The SMS gateway service is used for the first time sending data from a flood detection system to a flood information system. Second, disseminating flood information to the public. In this study, the flood warning system for flood early warning works with the integration of three modes.The three systems are flood detection systems, flood alarm systems, and flood early warning information systems. Flood detection systems are built using ultrasonic sensors and rain sensors as inputs, Arduino Uno as data processors and GSM SIM900 modules as outputs. The alarm system consists of GSM SIM900 module as Input, Arduino Uno as processor and electric alarm as output. The flood early warning information system was built using a Wavecom GSM modem, and data processing using PHP, MySQL DBMS, and Gammu. The communication system between each system uses SMS data. This method as a whole began in a flood detection system that sends flood and rain data to the flood early warning information system. And the flood warning system sends alarm activation data to the alarm system. Finally, the system distributes flood information to the public via SMS Gateway. This research is expected to help the community in anticipating more victims with flood information previously obtained


2020 ◽  
Author(s):  
Veronica Centorrino ◽  
Giuseppe Bilotta ◽  
Annalisa Cappello ◽  
Gaetana Ganci ◽  
Claudia Corradino ◽  
...  

<p>We explore the use of graph theory to assess short-term hazard of lava flow inundation, with Mt Etna as a case study. In the preparation stage, we convert into a graph the long-term hazard map produced using about 30,000 possible eruptive scenarios calculated by simulating lava flow paths with the physics-based MAGFLOW model. Cells in the original DEM-based representation are merged into graph vertices if reached by the same scenarios, and for each pair of vertices, a directed edge is defined, with an associated lava conductance (probability of lava flowing from one vertex to the other) computed from the number of scenarios that reach both the start and end vertex. In the application stage, the graph representation can be used to extract short-term lava flow hazard maps in case of unrest. When a potential vent opening area is identified e.g. from monitoring data, the corresponding vertices in the graph are activated, and the information about lava inundation probability is iteratively propagated to neighboring vertices through the edges, weighted according to the associated lava conductance. This allows quick identification of potentially inundated areas with little computational time. A comparison with the deterministic approach of subsetting and recomputing the weights in the long-term hazard map is also presented to illustrate benefits and downsides of the graph-based approach.</p>


Sign in / Sign up

Export Citation Format

Share Document