scholarly journals The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. Azizur Rahman ◽  
Jochen Halfar ◽  
Walter H. Adey ◽  
Merinda Nash ◽  
Carlos Paulo ◽  
...  
2001 ◽  
Vol 711 ◽  
Author(s):  
José I. Arias ◽  
Carolina Jure ◽  
Juan P. Wiff ◽  
María S. Fernández ◽  
Víctor Fuenzalida ◽  
...  

ABSTRACTNatural composite bioceramics such as bone, teeth, carapaces and shells contain organic and inorganic moieties, with the organic matrix components directly involved in the precise formation of these structures. We have previously shown that chicken eggshell contains two main sulfated polymers (proteoglycans), referred to as mammillan and ovoglycan which are involved in nucleation and growth of the eggshell calcite crystals. They differ on their anionic properties due to the carboxylate and sulfate content of their glycosaminoglycan component. Based on biological and biochemical evidences, the putative role of mammillan, a keratan sulfate proteoglycan, is in the nucleation of the first calcite crystals, while that of ovoglycan, a dermatan sulfate proteoglycan, is to regulate the growth and orientation of the later forming crystals of the chicken eggshell. In this communication, a systematic study of the influence of variable concentrations of glycosaminoglycans differing in their sulfation status on the morphology, size and number of calcium carbonate crystals after crystallization on microbridges from a calcium chloride solution under an atmosphere of ammonium carbonate at different pH is presented. Depending on the pH and concentration, the variation of sulfation status drastically changed the morphology, size and number of calcite crystals. The produced calcite particles with various morphologies are promising candidates for some novel materials with desirable shape- and texture-depending properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charalampos Konstantinou ◽  
Yuze Wang ◽  
Giovanna Biscontin ◽  
Kenichi Soga

AbstractProtocols for microbially induced carbonate precipitation (MICP) have been extensively studied in the literature to optimise the process with regard to the amount of injected chemicals, the ratio of urea to calcium chloride, the method of injection and injection intervals, and the population of the bacteria, usually using fine- to medium-grained poorly graded sands. This study assesses the effect of varying urease activities, which have not been studied systematically, and population densities of the bacteria on the uniformity of cementation in very coarse sands (considered poor candidates for treatment). A procedure for producing bacteria with the desired urease activities was developed and qPCR tests were conducted to measure the counts of the RNA of the Ure-C genes. Sand biocementaton experiments followed, showing that slower rates of MICP reactions promote more effective and uniform cementation. Lowering urease activity, in particular, results in progressively more uniformly cemented samples and it is proven to be effective enough when its value is less than 10 mmol/L/h. The work presented highlights the importance of urease activity in controlling the quality and quantity of calcium carbonate cements.


1916 ◽  
Vol 24 (8) ◽  
pp. 729-750 ◽  
Author(s):  
John Johnston ◽  
E. D. Williamson
Keyword(s):  

2001 ◽  
Vol 30A (1/4) ◽  
pp. 69-79 ◽  
Author(s):  
Claudia Ercole ◽  
Paola Cacchio ◽  
Georgio Cappuccio ◽  
Aldo Lepidi

2016 ◽  
Author(s):  
Merinda C. Nash ◽  
Sophie Martin ◽  
Jean-Pierre Gattuso

Abstract. Red calcareous coralline algae are thought to be among organisms the most vulnerable to ocean acidification due to the high solubility of their magnesium calcite skeleton. Although, skeletal mineralogy is proposed to change as CO2 and temperature continues rising, there is currently very little information available on the response of coralline algal carbonate mineralogy to near-future changes in pCO2 and temperature. Here we present results from a one-year controlled laboratory experiment to test mineralogical responses to pCO2 and temperature in the Mediterranean crustose coralline alga (CCA) Lithophyllum cabiochae. Our results show that Mg incorporation is mainly constrained by temperature (+1 mol% MgCO3 for an increase of 3 °C) and there was no response to pCO2. This suggests that L. cabiochae thalli have the ability to buffer calcifying medium against ocean acidification, enabling them to continue to deposit Mg-calcite with a significant mol% MgCO3 under elevated pCO2. Analyses of CCA dissolution chips showed a decrease in Mg content after 1 year for all treatments but this was not affected by pCO2 nor by temperature. Our findings suggest that biological processes exert a strong control on calcification on Mg-calcite and that CCA may be more resilient under rising CO2 than previously thought. However, previously demonstrated increased skeletal dissolution with ocean acidification will still have major consequences for the stability and maintenance of Mediterranean coralligenous habitats.


Sign in / Sign up

Export Citation Format

Share Document