scholarly journals Transcriptomic Profiling of Adipose Derived Stem Cells Undergoing Osteogenesis by RNA-Seq

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shahensha Shaik ◽  
Elizabeth C. Martin ◽  
Daniel J. Hayes ◽  
Jeffrey M. Gimble ◽  
Ram V. Devireddy
Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 105053 ◽  
Author(s):  
Bruna H. Marcon ◽  
Lucia Spangenberg ◽  
Bernardo Bonilauri ◽  
Anny Waloski Robert ◽  
Addeli Bez Batti Angulski ◽  
...  

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Bin Sun ◽  
Yongkang Jiang ◽  
Hengqing Cui ◽  
Xia Fang ◽  
Gang Han ◽  
...  

Abstract Macrodactyly is a congenital malformation characterized by enlargement of bone and soft tissues in limbs, typically with excessive accumulation of adipose tissues. Although gain-of-function mutation of PIK3CA has been identified in macrodactyly, the mechanism of PIK3CA mutation in adipose accumulation is poorly understood. In this study, we found that adipocytes from macrodactyly were more hypertrophic than those observed in polydactyly. PIK3CA (H1047R) activating mutation and enhanced activity of PI3K/AKT pathway were detected in macrodactylous adipose-derived stem cells (Mac-ADSCs). Compared to polydactyly-derived ADSCs (Pol-ADSCs), Mac-ADSCs had higher potential in adipogenic differentiation. Knockdown of PIK3CA or inhibition by BYL-719, a potent inhibitor of PIK3CA, impaired adipogenesis of Mac-ADSCs in vitro. In vivo study, either transient treatment of ADSCs or intragastrical gavage with BYL-719 inhibited the adipose formation in patient-derived xenograft (PDX). Furthermore, RNA-seq revealed that E2F1 was up-regulated in Mac-ADSCs and its knockdown blocked the PIK3CA-promoted adipogenesis. Our findings demonstrated that PIK3CA activating mutation promoted adipogenesis of ADSCs in macrodactyly, and that this effect was exerted by the up-regulation of E2F1. This study revealed a possible mechanism for adipose accumulation in macrodactyly and suggested BYL-719 as a potential therapeutic agent for macrodactyly treatment.


2021 ◽  
Vol 22 (15) ◽  
pp. 7939
Author(s):  
Byung-Chul Kim ◽  
Kyu Hwan Kwack ◽  
Jeewan Chun ◽  
Jae-Hyung Lee

Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT–PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.


Skull Base ◽  
2005 ◽  
Vol 15 (S 2) ◽  
Author(s):  
Stefan Lendeckel ◽  
A. Jödicke ◽  
P. Christophis ◽  
K. Heidinger ◽  
H.-P. Howaldt

Sign in / Sign up

Export Citation Format

Share Document