scholarly journals Comparative Transcriptome Analysis of Human Adipose-Derived Stem Cells Undergoing Osteogenesis in 2D and 3D Culture Conditions

2021 ◽  
Vol 22 (15) ◽  
pp. 7939
Author(s):  
Byung-Chul Kim ◽  
Kyu Hwan Kwack ◽  
Jeewan Chun ◽  
Jae-Hyung Lee

Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT–PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.

2016 ◽  
Vol 5 (22) ◽  
pp. 2951-2958 ◽  
Author(s):  
Ken-ichiro Kamei ◽  
Yoshie Koyama ◽  
Yumie Tokunaga ◽  
Yasumasa Mashimo ◽  
Momoko Yoshioka ◽  
...  

2019 ◽  
Author(s):  
Ludovic Gaut ◽  
Marie-Ange Bonnin ◽  
Isabelle Cacciapuoti ◽  
Monika Orpel ◽  
Mathias Mericskay ◽  
...  

AbstractOne of the main challenges in tendon field relies in the understanding of regulators of the tendon differentiation program. The optimum culture conditions that favor tendon cell differentiation are not identified. Mesenchymal stem cells present the ability to differentiate into multiple lineages in cultures under different cues ranging from chemical treatment to physical constraints. We analyzed the tendon differentiation potential of C3H10T1/2 cells, a murine cell line of mesenchymal stem cells, upon different 2D- and 3D-culture conditions. We observed that C3H10T1/2 cells cultured in 2D conditions on silicone substrate were more prone to tendon differentiation assessed with the expression of the tendon markers Scx, Col1a1 and Tnmd as compared to cells cultured on plastic substrate. 3D fibrin environment was more favorable for Scx and Col1a1 expression compared to 2D-cultures. We also identified TGFβ2 as a negative regulator of Tnmd expression in C3H10T1/2 cells in 2D- and 3D-cultures. Altogether, our results provide us with a better understanding of the culture conditions that promote tendon gene expression and identify mechanical and molecular parameters on which we could play to define the optimum culture conditions that favor tenogenic differentiation in mesenchymal stem cells.


2021 ◽  
pp. 039139882098680
Author(s):  
Xuefeng Zhang ◽  
Nan Wang ◽  
Yuhua Huang ◽  
Yan Li ◽  
Gang Li ◽  
...  

Background: Three-dimensional (3D) culture has been reported to increase the therapeutic potential of mesenchymal stem cells (MSCs). The present study assessed the therapeutic efficacy of extracellular vesicles (EVs) from 3D cultures of human placental MSCs (hPMSCs) for acute kidney injury (AKI). Methods: The supernatants from monolayer culture (2D) and 3D culture of hPMSCs were ultra-centrifuged for EVs isolation. C57BL/6 male mice were submitted to 45 min bilateral ischemia of kidney, followed by renal intra-capsular administration of EVs within a 72 h reperfusion period. Histological, immunohistochemical, and ELISA analyses of kidney samples were performed to evaluate cell death and inflammation. Kidney function was evaluated by measuring serum creatinine and urea nitrogen. The miRNA expression profiles of EVs from 2D and 3D culture of hPMSCs were evaluated using miRNA microarray analysis. Results: The 3D culture of hPMSCs formed spheroids with different diameters depending on the cell density seeded. The hPMSCs produced significantly more EVs in 3D culture than in 2D culture. More importantly, injection of EVs from 3D culture of hPMSCs into mouse kidney with ischemia-reperfusion (I/R)-AKI was more beneficial in protecting from progression of I/R than those from 2D culture. The EVs from 3D culture of hPMSCs were more efficient against apoptosis and inflammation than those from 2D culture, which resulted in a reduction in tissue damage and amelioration of renal function. MicroRNA profiling analysis revealed that a set of microRNAs were significantly changed in EVs from 3D culture of hPMSCs, especially miR-93-5p. Conclusion: The EVs from 3D culture of hPMSCs have therapeutic potential for I/R-AKI.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Stephan Payr ◽  
Elizabeth Rosado-Balmayor ◽  
Thomas Tiefenboeck ◽  
Tim Schuseil ◽  
Marina Unger ◽  
...  

Abstract Background The aim of this study was the investigation of the osteogenic potential of human osteoblasts of advanced donor age in 2D and 3D culture. Methods Osteoblasts were induced to osteogenic differentiation and cultivated, using the same polystyrene material in 2D and 3D culture for 2 weeks. Samples were taken to evaluate alkaline phosphatase (ALP) activity, mineralization and gene expression. Results Osteoprotegerin (OPG) levels were significantly increased (8.2-fold) on day 7 in 3D compared to day 0 (p < 0.0001) and 11.6-fold higher in 3D than in 2D (p < 0.0001). Both culture systems showed reduced osteocalcin (OC) levels (2D 85% and 3D 50% of basic value). Collagen type 1 (Col1) expression was elevated in 3D on day 7 (1.4-fold; p = 0.009). Osteopontin (OP) expression showed 6.5-fold higher levels on day 7 (p = 0.002) in 3D than in 2D. Mineralization was significantly higher in 3D on day 14 (p = 0.0002). Conclusion Advanced donor age human primary osteoblasts reveal significantly higher gene expression levels of OPG, Col1 and OP in 3D than in monolayer. Therefore, it seems that a relatively high potential of bone formation in a natural 3D arrangement is presumably still present in osteoblasts of elderly people. Trial registration 5217/11 on the 22nd of Dec. 2011.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.


2016 ◽  
Vol 4 (20) ◽  
pp. 3515-3525 ◽  
Author(s):  
Shirae K. Leslie ◽  
Anthony M. Nicolini ◽  
Gobalakrishnan Sundaresan ◽  
Jamal Zweit ◽  
Barbara D. Boyan ◽  
...  

Alginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration.


2014 ◽  
Vol 11 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Nareshwaran Gnanasegaran ◽  
Vijayendran Govindasamy ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim

Sign in / Sign up

Export Citation Format

Share Document