scholarly journals Permeability enhancement through hydraulic fracturing: laboratory measurements combining a 3D printed jacket and pore fluid over-pressure

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stephan Gehne ◽  
Philip M. Benson
2019 ◽  
Vol 7 (5) ◽  
pp. 1867-1881 ◽  
Author(s):  
Yin Shuaifeng ◽  
Ma Haifeng ◽  
Cheng Zhiheng ◽  
Zou Quanle ◽  
Li Yingming ◽  
...  

2017 ◽  
Vol 184 ◽  
pp. 227-240 ◽  
Author(s):  
Sandeep Kumar ◽  
Matias Zielonka ◽  
Kevin Searles ◽  
Ganesh Dasari

2017 ◽  
Vol 44 (11) ◽  
pp. 5468-5475 ◽  
Author(s):  
Noriaki Watanabe ◽  
Motoki Egawa ◽  
Kiyotoshi Sakaguchi ◽  
Takuya Ishibashi ◽  
Noriyoshi Tsuchiya

2020 ◽  
Vol 205 ◽  
pp. 02009
Author(s):  
Catarina Baptista-Pereira ◽  
Bruno Gonçalves da Silva

Enhanced Geothermal Systems have relied on hydraulic fracturing to increase the permeability of rock reservoirs. The permeability enhancement depends on the connectivity between new and existing fractures. This, in turn, depends to a large extent on the interaction between the rock and the fracturing fluid, which not only pressurizes existing and new fractures but also diffuses into the rock matrix. In this research, the effect of the diffusivity of hydraulic oil on the fracturing processes and microseismicity of unconfined prismatic granite specimens was experimentally evaluated using visual and acoustic emission monitoring. The tests consisted of injecting hydraulic oil into two pre-fabricated flaws at two rates (2 ml/min and 20 ml/min), kept constant in each test. The fluid pressure inside the flaws was increased until hydraulic fractures propagated and the fluid front growing from the pre-fabricated flaws was visually monitored throughout the tests. It was observed that the fracturing pressures and patterns were injection-rate-dependent, which shows that diffusivity and poro-elastic effects play an important role in the hydraulic fracturing processes of granite. A smaller fluid front was observed for the 20 ml/min injection rate, associated to a lower volume injected and to a higher fracturing pressure when compared to the 2 ml/min injection rate. This was interpreted to be caused by the different pore pressures that developed inside of the rock matrix, which are function of the fluid front size. Microseismic activity was observed throughout the tests, becoming more intense and localized near the flaws as one approached the end of the test (i.e. visible crack propagation). While microseismic events were observed outside the fluid front region, their density was significantly larger within this area, showing that fluid diffusivity may contribute to an intensification of the microseismic activity.


2022 ◽  
Vol 119 (3) ◽  
pp. e2110776118
Author(s):  
Masaoki Uno ◽  
Kodai Koyanagawa ◽  
Hisamu Kasahara ◽  
Atsushi Okamoto ◽  
Noriyoshi Tsuchiya

Hydration and carbonation reactions within the Earth cause an increase in solid volume by up to several tens of vol%, which can induce stress and rock fracture. Observations of naturally hydrated and carbonated peridotite suggest that permeability and fluid flow are enhanced by reaction-induced fracturing. However, permeability enhancement during solid-volume–increasing reactions has not been achieved in the laboratory, and the mechanisms of reaction-accelerated fluid flow remain largely unknown. Here, we present experimental evidence of significant permeability enhancement by volume-increasing reactions under confining pressure. The hydromechanical behavior of hydration of sintered periclase [MgO + H2O → Mg(OH)2] depends mainly on the initial pore-fluid connectivity. Permeability increased by three orders of magnitude for low-connectivity samples, whereas it decreased by two orders of magnitude for high-connectivity samples. Permeability enhancement was caused by hierarchical fracturing of the reacting materials, whereas a decrease was associated with homogeneous pore clogging by the reaction products. These behaviors suggest that the fluid flow rate, relative to reaction rate, is the main control on hydromechanical evolution during volume-increasing reactions. We suggest that an extremely high reaction rate and low pore-fluid connectivity lead to local stress perturbations and are essential for reaction-induced fracturing and accelerated fluid flow during hydration/carbonation.


Sign in / Sign up

Export Citation Format

Share Document