scholarly journals Volatile-consuming reactions fracture rocks and self-accelerate fluid flow in the lithosphere

2022 ◽  
Vol 119 (3) ◽  
pp. e2110776118
Author(s):  
Masaoki Uno ◽  
Kodai Koyanagawa ◽  
Hisamu Kasahara ◽  
Atsushi Okamoto ◽  
Noriyoshi Tsuchiya

Hydration and carbonation reactions within the Earth cause an increase in solid volume by up to several tens of vol%, which can induce stress and rock fracture. Observations of naturally hydrated and carbonated peridotite suggest that permeability and fluid flow are enhanced by reaction-induced fracturing. However, permeability enhancement during solid-volume–increasing reactions has not been achieved in the laboratory, and the mechanisms of reaction-accelerated fluid flow remain largely unknown. Here, we present experimental evidence of significant permeability enhancement by volume-increasing reactions under confining pressure. The hydromechanical behavior of hydration of sintered periclase [MgO + H2O → Mg(OH)2] depends mainly on the initial pore-fluid connectivity. Permeability increased by three orders of magnitude for low-connectivity samples, whereas it decreased by two orders of magnitude for high-connectivity samples. Permeability enhancement was caused by hierarchical fracturing of the reacting materials, whereas a decrease was associated with homogeneous pore clogging by the reaction products. These behaviors suggest that the fluid flow rate, relative to reaction rate, is the main control on hydromechanical evolution during volume-increasing reactions. We suggest that an extremely high reaction rate and low pore-fluid connectivity lead to local stress perturbations and are essential for reaction-induced fracturing and accelerated fluid flow during hydration/carbonation.

1984 ◽  
Vol 49 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Pavel Lederer ◽  
Eva Mácová ◽  
Josef Vepřek-Šiška

The decomposition of peroxobenzoic acid in benzene was studied, and catalytic effects of Fe(III), Mn(III), Co(II), Co(III), and Cr(III) on the reaction rate and the composition of the reaction mixture were investigated. An analogous experiment carried out in perdeuterobenzene and determination of the distribution of deuterium in the reaction products provided evidence for the participation of the solvent in peroxobenzoic acid decomposition.


1990 ◽  
Vol 55 (7) ◽  
pp. 1678-1685
Author(s):  
Vladimír Stuchlý ◽  
Karel Klusáček

Kinetics of CO methanation on a commercial Ni/SiO2 catalyst was evaluated at atmospheric pressure, between 528 and 550 K and for hydrogen to carbon monoxide molar ratios ranging from 3 : 1 to 200 : 1. The effect of reaction products on the reaction rate was also examined. Below 550 K, only methane was selectively formed. Above this temperature, the formation of carbon dioxide was also observed. The experimental data could be described by two modified Langmuir-Hinshelwood kinetic models, based on hydrogenation of surface CO by molecularly or by dissociatively adsorbed hydrogen in the rate-determining step. Water reversibly lowered catalyst activity and its effect was more pronounced at higher temperature.


2020 ◽  
Vol 224 (3) ◽  
pp. 1670-1683
Author(s):  
Liming Zhao ◽  
Genyang Tang ◽  
Chao Sun ◽  
Jianguo Zhao ◽  
Shangxu Wang

SUMMARY We conducted stress–strain oscillation experiments on dry and partially oil-saturated Fontainebleau sandstone samples over the 1–2000 Hz band at different confining pressures to investigate the wave-induced fluid flow (WIFF) at mesoscopic and microscopic scales and their interaction. Three tested rock samples have similar porosity between 6 and 7 per cent and were partially saturated to different degrees with different oils. The measurement results exhibit a single or two attenuation peaks that are affected by the saturation degree, oil viscosity and confining pressure. One peak, exhibited by all samples, shifts to lower frequencies with increasing pressure, and is mainly attributed to grain contact- or microcrack-related squirt flow based on modelling of its characteristics and comparison with other experiment results for sandstones. The other peak is present at smaller frequencies and shifts to higher frequencies as the confining pressure increases, showing an opposite pressure dependence. This contrast is interpreted as the result of fluid flow patterns at different scales. We developed a dual-scale fluid flow model by incorporating the squirt flow effect into the patchy saturation model, which accounts for the interaction of WIFFs at microscopic and mesoscopic scales. This model provides a reasonable interpretation of the measurement results. Our broad-frequency-band measurements give physical evidence of WIFFs co-existing at two different scales, and combining with modelling results, it suggests that the WIFF mechanisms, related to pore microstructure and fluid distribution, interplay with each other and jointly control seismic attenuation and dispersion at reservoir conditions. These observations and modelling results are useful for quantitative seismic interpretation and reservoir characterization, specifically they have potential applications in time-lapse seismic analysis, fluid prediction and reservoir monitoring.


Geofluids ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 108-122 ◽  
Author(s):  
X. ZHANG ◽  
C. J. SPIERS ◽  
C. J. PEACH

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwei Cai ◽  
Tongqing Wu ◽  
Jian Lu ◽  
Yue Wu ◽  
Nianchun Xu

The fracture of sandstone is closely related to the condition of internal microcracks and the fabric of micrograin. The macroscopic mechanical property depends on its microscopic structures. However, it is difficult to obtain the law of the microcrack growth under loading by experiments. A series of microscopic sandstone models were established with particle flow code 3D (PFC3D) and based on the triaxial experiment results on sandstones. The experimental and numerical simulations of natural and saturated sandstones under different confining pressures were implemented. We analyzed the evolution of rock deformation and the rock fracture development from a microscopic view. Results show that although the sandstones are under different confining pressures, the law of microcrack growth is the same. That is, the number of the microcracks increases slowly in the initial stage and then increases exponentially. The number of shear cracks is more than the tensile cracks, and the proportion of the shear cracks increases with the increase of confining pressure. The cracking strength of natural and saturated sandstones is 26% and 27% of the peak strength, respectively. Under low confining pressure, the total number of cracks in the saturated sample is 20% more than that of the natural sample and the strongly scattered chain is barely seen. With the increase of the confining pressure, the effect of water on the total number of cracks is reduced and the distribution of the strong chain is even more uniform. In other words, it is the confining pressure that mainly affects the distribution of the force chain, irrespective of the state of the rock, natural or saturated. The research results reveal that the control mechanism of shear crack friction under the different stress states of a rock slope in the reservoir area provides a basis for evaluating the stability of rock mass and predicting the occurrence of geological disasters.


2008 ◽  
Vol 124 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Yujing JIANG ◽  
Tomofumi KOYAMA ◽  
Bo LI ◽  
Yusuke TASAKU ◽  
Ryousuke SAHO ◽  
...  

2021 ◽  
Author(s):  
Amir A. Mofakham ◽  
Farid Rousta ◽  
Dustin M. Crandall ◽  
Goodarz Ahmadi

Abstract Hydraulic fracturing or fracking is a procedure used extensively by oil and gas companies to extract natural gas or petroleum from unconventional sources. During this process, a pressurized liquid is injected into wellbores to generate fractures in rock formations to create more permeable pathways in low permeability rocks that hold the oil. To keep the rock fractures open after removing the high pressure, proppant, which typically are sands with different shapes and sizes, are injected simultaneously with the fracking fluid to spread them throughout rock fractures. The extraction productivity from shale reservoirs is significantly affected by the performance and quality of the proppant injection process. Since these processes occur under the ground and in the rock fractures, using experimental investigations to examine the process is challenging, if not impossible. Therefore, employing numerical tools for analyzing the process could provide significant insights leading to the fracking process improvement. Accordingly, in this investigation, a 4-way coupled Computational Fluid Dynamic and Discrete Element Method (CFD-DEM) code was used to simulate proppant transport into a numerically generated realistic rock fracture geometry. The simulations were carried out for a sufficiently long period to reach the fractures’ steady coverage by proppant. The proppant fracture coverage is a distinguishing factor that can be used to assess the proppant injection process quality. A series of simulations with different proppant sizes as well as various fracking fluid flow rates, were performed. The corresponding estimated fracture coverages for different cases were compared. The importance of proppant size as well as the fluid flow rate on the efficiency of the proppant injection process, were evaluated and discussed.


Sign in / Sign up

Export Citation Format

Share Document