scholarly journals Stimulated phospholipid synthesis is key for hepatitis B virus replications

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qingxia Huang ◽  
Hehua Lei ◽  
Laifeng Ding ◽  
Yulan Wang

Abstract Chronic hepatitis B Virus (HBV) infection has high morbidity, high pathogenicity and unclear pathogenesis. To elucidate the relationship between HBV replication and host phospholipid metabolites, we measured 10 classes of phospholipids in serum of HBV infected patients and cells using ultra performance liquid chromatograph-triple quadruple mass spectrometry. We found that the levels of phosphatidylcholine (PC), phosphatidylethanolamine, and lyso-phosphatidic acid were increased in HBsAg (+) serum of infected patients compared with HBsAg (−), while phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and sphingomyelin were decreased, which were confirmed in an HBV infected HepG2.2.15 cell line. We further evaluated the enzyme levels of PC pathways and found that PCYT1A and LPP1 for PC synthesis were up-regulated after HBV infection. Moreover, HBV replication was inhibited when PCYT1A and LPP1 were inhibited. These results indicated that the PC synthesis in HBV infected host are regulated by PCYT1A and LPP1, which suggests that PCYT1A, LPP1 could be new potential targets for HBV treatment.

Gut ◽  
2012 ◽  
Vol 61 (Suppl 1) ◽  
pp. i6-i17 ◽  
Author(s):  
Maura Dandri ◽  
Stephen Locarnini

Chronic hepatitis B virus (HBV) infection remains a major health burden and the main risk factor for the development of hepatocellular carcinoma worldwide. However, HBV is not directly cytopathic and liver injury appears to be mostly caused by repeated attempts of the host's immune responses to control the infection. Recent studies have shown that the unique replication strategy adopted by HBV enables it to survive within the infected hepatocyte while complex virus–host interplays ensure the virus is able to fulfil its replication requirements yet is still able to evade important host antiviral innate immune responses. Clearer understanding of the host and viral mechanisms affecting HBV replication and persistence is necessary to design more effective therapeutic strategies aimed at improving the management of patients with chronic HBV infection to eventually achieve viral eradication. This article focuses on summarising the current knowledge of factors influencing the course of HBV infection, giving emphasis on the use of novel assays and quantitative serological and intrahepatic biomarkers as tools for predicting treatment response and disease progression.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 997 ◽  
Author(s):  
Anastasiya Kostyusheva ◽  
Sergey Brezgin ◽  
Ekaterina Bayurova ◽  
Ilya Gordeychuk ◽  
Maria Isaguliants ◽  
...  

Chronic hepatitis B virus infection (CHB) caused by the hepatitis B virus (HBV) is one of the most common viral infections in the world. Reactivation of HBV infection is a life-threatening condition observed in patients with CHB receiving chemotherapy or other medications. Although HBV reactivation is commonly attributed to immune suppression, other factors have long been suspected to play a role, including intracellular signaling activated in response to DNA damage. We investigated the effects of DNA-damaging factors (doxorubicin and hydrogen peroxide) on HBV reactivation/replication and the consequent DNA-damage response. Dose-dependent activation of HBV replication was observed in response to doxorubicin and hydrogen peroxide which was associated with a marked elevation in the mRNA levels of ataxia-telangiectasia mutated (ATM) and ATM- and RAD3-related (ATR) kinases. Downregulation of ATM or ATR expression by shRNAs substantially reduced the levels of HBV RNAs and DNA. In contrast, transcriptional activation of ATM or ATR using CRISPRa significantly increased HBV replication. We conclude that ATM and ATR are essential for HBV replication. Furthermore, DNA damage leading to the activation of ATM and ATR transcription, results in the reactivation of HBV replication.


2013 ◽  
Vol 62 (8) ◽  
pp. 1235-1238 ◽  
Author(s):  
Inmaculada Castillo ◽  
Javier Bartolomé ◽  
Juan Antonio Quiroga ◽  
Vicente Carreño

Hepatitis C virus (HCV) infection in the absence of detectable antibodies against HCV and of viral RNA in serum is called occult HCV infection. Its prevalence and clinical significance in chronic hepatitis B virus (HBV) infection is unknown. HCV RNA was tested for in the liver samples of 52 patients with chronic HBV infection and 21 (40 %) of them were positive for viral RNA (occult HCV infection). Liver fibrosis was found more frequently and the fibrosis score was significantly higher in patients with occult HCV than in negative ones, suggesting that occult HCV infection may have an impact on the clinical course of HBV infection.


2012 ◽  
Vol 18 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Xinghui Zhao ◽  
Zhanzhong Zhao ◽  
Junwei Guo ◽  
Peitang Huang ◽  
Xudong Zhu ◽  
...  

Chronic hepatitis B virus (HBV) infection is an independent risk factor for the development of hepatocellular carcinoma (HCC). The HBV HBx gene is frequently identified as an integrant in the chromosomal DNA of patients with HCC. HBx encodes the X protein (HBx), a putative viral oncoprotein that affects transcriptional regulation of several cellular genes. Therefore, HBx may be an ideal target to impede the progression of HBV infection–related HCC. In this study, integrated HBx was transcriptionally downregulated using an artificial transcription factor (ATF). Two three-fingered Cys2-His2 zinc finger (ZF) motifs that specifically recognized two 9-bp DNA sequences regulating HBx expression were identified from a phage-display library. The ZF domains were linked into a six-fingered protein that specified an 18-bp DNA target in the Enhancer I region upstream of HBx. This DNA-binding domain was fused with a Krüppel-associated box (KRAB) transcriptional repression domain to produce an ATF designed to downregulate HBx integrated into the Hep3B HCC cell line. The ATF significantly repressed HBx in a luciferase reporter assay. Stably expressing the ATF in Hep3B cells resulted in significant growth arrest, whereas stably expressing the ATF in an HCC cell line lacking integrated HBx (HepG2) had virtually no effect. The targeted downregulation of integrated HBx is a promising novel approach to inhibiting the progression of HBV infection–related HCC.


2017 ◽  
Author(s):  
◽  
Andrew Douglas Huber

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Chronic hepatitis B virus (HBV) infection leads to liver disease, cirrhosis, and hepatocellular carcinoma. Globally, an estimated 50% of all hepatocellular carcinoma cases are linked to chronic HBV infection. More than 240 million people are chronically infected, and there are 0.5-1 million deaths per year due to HBVrelated liver conditions. HBV treatment options rarely cure infections and are associated with adverse side effects that often outweigh the potential benefits of treatment. New treatments, therefore, are highly desired for HBV therapy. Towards this goal, we have developed novel compounds targeting two viral targets and assessed the mechanisms of action by which these compounds act. We have developed systems for the discovery and evaluation of compounds that inhibit 2 distinct steps in the HBV life cycle. Using these systems, we have developed potent inhibitors of HBV replication that have potential to become clinically used HBV drugs. Furthermore, we have used our methods to evaluate which properties of these compounds are likely to result in better viral inhibition. The work described in this thesis has led to at least 2 new compound groups for potential use as HBV antivirals and provides insight into mechanisms by which potent antivirals can be achieved.


1989 ◽  
Vol 9 ◽  
pp. S189
Author(s):  
P Marcellin ◽  
G Pialcux ◽  
PM Girard ◽  
N Bover ◽  
M Martinot ◽  
...  

2021 ◽  
Author(s):  
Shuisen Zheng ◽  
Huale Zhang ◽  
Rongxin Chen ◽  
Jianying Yan ◽  
Qing Han

Abstract Background: We aimed to investigate whether maternal chronic hepatitis B virus (HBV) infection affects preterm birth(PTB) in pregnant women. Methods: We retrospectively analyzed HBV-infected and non-infected pregnant women attending antenatal care at Fujian Provincial Maternity and Child Health Hospital, Fuzhou, China between January 1, 2016 to December 31, 2018. Participants were divided into HBV infection (n = 1302) and control (n = 12813) groups. We compared baseline data, pregnancy and perinatal complications, and preterm delivery outcomes between groups and performed subgroup comparisons and multiple logistics regression analysis to adjust for confounding factors. Results: The incidence of PTBs before 37 weeks was similar between the groups. PTBs before 34 weeks were significantly more among the HBV infection group than among the controls (1.6% VS. 0.8% ; P = 0.003) After adjusting for confounding factors through logistics regression, HBV infection was found to be an independent PTB risk factor before 34 weeks gestation (adjusted odds ratio 1.796; 95% confidence interval[1.071, 3.012]). According to the subgroup analysis based on whether hepatitis B e-antigen (HBeAg) was positive and whether alanine aminotransferase (ALT) levels were normal during the second trimester, PTB was more frequent in HBeAg negative HBV infection before 34 weeks than among controls(1.8% VS. 0.8%). The PTB rate for pregnant women with normal ALT and HBV infection before 34 weeks was higher than that of the controls (1.6% VS. 0.8%) Conclusion HBV infection is an independent risk factor for PTB before 34 weeks. Comprehensive programs focusing on pregnant women with HBV infection would reduce the incidence of adverse outcomes.


Sign in / Sign up

Export Citation Format

Share Document