scholarly journals CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alex K. Datsomor ◽  
Rolf E. Olsen ◽  
Nikola Zic ◽  
Angelico Madaro ◽  
Atle M. Bones ◽  
...  

AbstractThe in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.

2016 ◽  
Vol 113 (29) ◽  
pp. 8182-8187 ◽  
Author(s):  
Jing Tian ◽  
Joseph L. Goldstein ◽  
Michael S. Brown

Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPβ, but a connection between LXRα and C/EBPβ has not been made. Here we show that LXRα and C/EBPβ form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPβ complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPβ in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPβ complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it.


2009 ◽  
Vol 29 (17) ◽  
pp. 4864-4872 ◽  
Author(s):  
Seung-Soon Im ◽  
Linda E. Hammond ◽  
Leyla Yousef ◽  
Cherryl Nugas-Selby ◽  
Dong-Ju Shin ◽  
...  

ABSTRACT We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregulated genes directly linked to lipid metabolism were Srebf1 (which encodes SREBP-1) and Acacb (which encodes acetyl coenzyme A [acetyl-CoA] carboxylase 2 [ACC2], a critical regulator of fatty acyl-CoA partitioning between cytosol and mitochondria). ACC2 regulation is particularly important during food restriction. Similar to Acacb knockout mice, SREBP-1a-deficient mice have lower hepatic triglycerides and higher serum ketones during fasting than wild-type mice. SREBP-1a and -1c have identical DNA binding and dimerization domains; thus, the failure of the more abundant SREBP-1c to substitute for activating hepatic ACC2 must relate to more efficient recruitment of transcriptional coactivators to the more potent SREBP-1a activation domain. Our chromatin immunoprecipitation results support this hypothesis.


2009 ◽  
Vol 30 (5) ◽  
pp. 1182-1198 ◽  
Author(s):  
Virginie Lecomte ◽  
Emmanuelle Meugnier ◽  
Vanessa Euthine ◽  
Christine Durand ◽  
Damien Freyssenet ◽  
...  

ABSTRACT The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.


2010 ◽  
Vol 107 (40) ◽  
pp. 17321-17326 ◽  
Author(s):  
T. Horie ◽  
K. Ono ◽  
M. Horiguchi ◽  
H. Nishi ◽  
T. Nakamura ◽  
...  

2020 ◽  
Author(s):  
Giulia Birolini ◽  
Gianluca Verlengia ◽  
Francesca Talpo ◽  
Claudia Maniezzi ◽  
Lorena Zentilin ◽  
...  

AbstractBrain cholesterol is produced mainly by astrocytes and is important for neuronal function. Its biosynthesis is severely reduced in mouse models of Huntington’s Disease (HD). One possible mechanism is a diminished nuclear translocation of the transcription factor sterol regulatory element binding protein 2 (SREBP2) and, consequently, reduced activation of SREBP-controlled genes in the cholesterol biosynthesis pathway.Here we evaluated the efficacy of a gene therapy based on the unilateral intra-striatal injection of a recombinant adeno-associated virus 2/5 (AAV2/5) targeting astrocytes specifically and carrying the N-terminal fragment of human SREBP2 (hSREBP2).Robust hSREBP2 expression in striatal glial cells in HD mice activated the transcription of cholesterol biosynthesis pathway genes, restored synaptic transmission, reversed Drd2 transcript levels decline, cleared muHTT aggregates and attenuated behavioral deficits. We conclude that glial SREBP2 participates in HD brain pathogenesis in vivo and that AAV-based delivery of SREBP2 to astrocytes counteracts key features of HD.


2007 ◽  
Vol 363 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Yoshinori Takeuchi ◽  
Naoya Yahagi ◽  
Yoshimi Nakagawa ◽  
Takashi Matsuzaka ◽  
Ritsuko Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document