scholarly journals Unprecedented efficient electron transport across Au nanoparticles with up to 25-nm insulating SiO2-shells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chuanping Li ◽  
Chen Xu ◽  
David Cahen ◽  
Yongdong Jin

AbstractQuantum tunneling is the basis of molecular electronics, but often its electron transport range is too short to overcome technical defects caused by downscaling of electronic devices, which limits the development of molecular-/nano-electronics. Marrying electronics with plasmonics may well present a revolutionary way to meet this challenge as it can manipulate electron flow with plasmonics at the nanoscale. Here we report on unusually efficient temperature-independent electron transport, with some photoconductivity, across a new type of junction with active plasmonics. The junction is made by assembly of SiO2 shell-insulated Au nanoparticles (Au@SiO2 NPs) into dense nanomembranes of a few Au@SiO2 layers thick and transport is measured across these membranes. We propose that the mechanism is plasmon-enabled transport, possibly tunneling (as it is temperature-independent). Unprecedentedly ultra-long-range transport across one, up to even three layers of Au@SiO2 in the junction, with a cumulative insulating (silica) gap up to 29 nm/NP layer was achieved, well beyond the measurable limit for normal quantum mechanical tunneling across insulators (~2.5 nm at 0.5–1 V). This finding opens up a new interdisciplinary field of exploration in nanoelectronics with wide potential impact on such areas as electronic information transfer.

1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shira Yochelis ◽  
Eran Katzir ◽  
Yoav Kalcheim ◽  
Vitaly Gutkin ◽  
Oded Millo ◽  
...  

Many intriguing aspects of molecular electronics are attributed to organic-inorganic interactions, yet charge transfer through such junctions still requires fundamental study. Recently, there is a growing interest in anchoring groups, which considered dominating the charge transport. With this respect, we choose to investigate self-assembly of disilane molecules sandwiched between gold surface and gold nanoparticles. These assemblies are found to exhibit covalent bonds not only between the anchoring Si groups and the gold surfaces but also in plane crosslinks that increase the monolayer stability. Finally, using scanning tunneling spectroscopy we demonstrate that the disilane molecules provide strong electrical coupling between the Au nanoparticles and a superconductor substrate.


1998 ◽  
Vol 53 (9-10) ◽  
pp. 849-856
Author(s):  
Sujata R. Mishra ◽  
Surendra Chandra Sabat

Stimulatory effect of divalent cations like calcium (Ca2+) and magnesium (Mg2+) was investigated on electron transport activity of divalent cation deficient low-salt suspended (LS) thylakoid preparation from a submerged aquatic angiosperm, Hydrilla verticillata. Both the cations stimulated electron transport activity of LS-suspended thylakoids having an intact water oxidation complex. But in hydroxylamine (NH2OH) - or alkaline Tris - washed thylakoid preparations (with the water oxidation enzyme impaired), only Ca2+ dependent stimulation of electron transport activity was found. The apparent Km of Ca2+ dependent stimulation of electron flow from H2O (endogenous) or from artificial electron donor (exogenous) to dichlorophenol indophenol (acceptor) was found to be identical. Calcium supported stimulation of electron transport activity in NH2OH - or Tris - washed thylakoids was electron donor selective, i.e., Ca2+ ion was only effective in electron flow with diphenylcarbazide but not with NH2OH as electron donor to photosystem II. A magnesium effect was observed in thylakoids having an intact water oxidation complex and the ion became unacceptable in NH2OH - or Tris - washed thylakoids. Indirect experimental evidences have been presented to suggest that Mg2+ interacts with the water oxidation complex, while the Ca2+ interaction is localized betw een Yz and reaction center of photosystem II.


1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


2018 ◽  
Vol 24 (48) ◽  
pp. 12686-12694 ◽  
Author(s):  
Qi Wang ◽  
Fangyu Fu ◽  
Angel M. Martinez-Villacorta ◽  
Sergio Moya ◽  
Lionel Salmon ◽  
...  

1972 ◽  
Vol 27 (4) ◽  
pp. 445-455 ◽  
Author(s):  
Heinrich Strotmann ◽  
Christa Von Gösseln

Photosystem I related phosphorylation of isolated chloroplasts was investigated with special reference to the stoichiometry between ATP production and electron transprt (ATP: 2e⊖). The system studied contained DCMU to inhibit electron flow from photosystem II, ascorbate and DPIP to supply electrons to photosystem I, and methylviologen as electron acceptor. The following results were obtained:1. Basal electron transport is stimulated by the addition of the phosphorylating system, indicating that phosphorylation is really coupled to non-cyclic electron flow. The ratio ATP: 2e⊖ is 1, when the increase of electron flow obtained by the addition of ADP and phosphate is correlated to phosphorylation. This ratio is constant upon varying several parameters including DPIP concentration and light intensity.2. In the absence of methylviologen a DPIP catalyzed cyclic phosphorylation takes place (cf. I. c.7, 11, 12). Phosphorylation is not increased by the addition of methylviologen, indicating that both, the cyclic DPIP mediated and the non-cyclic system are coupled to the same phosphorylation site and limited by the same reaction step.3. In the absence of oxygen a methylviologen supported cyclic phosphorylation occurs. Comparing optimum rates, phosphorylation under these conditions is about twice as high as in the noncyclic system. Therefore we conclude that two phosphorylation sites are involved in methylviologen catalyzed cyclic electron transport. This system is sensitive against trypsin treatment of the chloroplasts, whereas the linear system is not.4. The two cyclic systems as well as the non-cyclic system are coupled to reversible proton uptake. Furthermore the linear system exhibits an irreversible uptake of hydrogen ions, which is stoichiometric to electron flow. From the reversible and the irreversible components of the pH changes the ratio of the proton pump to electron transprt can be calculated. Under steady state conditions the ration H⨁ : e⊖ approaches 1.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
Surendra Chandra Sabat

Abstract The inhibitory effects of copper ion (Cu2+) on the photosynthetic electron transport func­tion was investigated both in NaCl washed (depleted in 17 and 23 kDa polypeptides) and native (unwashed) photosystem II membrane preparations from spinach (Beta vulgaris) chlo-roplasts. Copper in the range of 2.0 to 15 μᴍ strongly inhibited the electron flow from water to 2,6-dichlorobenzoquinone in NaCl washed particles in a concentration dependent manner. Com plete inhibition was noticed at 15 μᴍ Cu2+. Oppositely in native membranes, 15 μᴍ C u2+ inhibited only 10-12% of control activity. It was found that calcium ion (Ca2+) significantly reduced the Cu2+ inhibition of electron transport activity. The Ca2+ supported prevention of Cu2+ toxicity was specific to Ca2+. Further analysis indicated that both Cu2+ and Ca2+ act competitively. Since Ca2+ is known to have stimulating/stabilizing effect at the donor side of photosystem II, it is therefore suggested that Cu2+ in NaCl washed particles exerts its inhibi­tory effect(s) at the oxidizing side of photosystem stimulates/stabilizes the oxygen evolution.


2020 ◽  
Vol 13 (9) ◽  
pp. 2903-2914 ◽  
Author(s):  
Andrey Kanygin ◽  
Yuval Milrad ◽  
Chandrasekhar Thummala ◽  
Kiera Reifschneider ◽  
Patricia Baker ◽  
...  

Photosystem I-hydrogenase chimera intercepts electron flow directly from the photosynthetic electron transport chain and directs it to hydrogen production.


Sign in / Sign up

Export Citation Format

Share Document