scholarly journals Acute pancreatitis promotes the generation of two different exosome populations

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Jiménez-Alesanco ◽  
M. Marcuello ◽  
M. Pastor-Jiménez ◽  
L. López-Puerto ◽  
L. Bonjoch ◽  
...  

AbstractExosomes are small extracellular vesicles that act as intercellular messengers. Previous studies revealed that, during acute pancreatitis, circulating exosomes could reach the alveolar compartment and activate macrophages. However, proteomic analysis suggested that the most likely origin of these exosomes could be the liver instead of the pancreas. The present study aimed to characterize the exosomes released by pancreas to pancreatitis-associated ascitic fluid (PAAF) as well as those circulating in plasma in an experimental model of taurocholate-induced acute pancreatitis in rats. We provide evidence that during acute pancreatitis two different populations of exosomes are generated with relevant differences in cell distribution, protein and microRNA content as well as different implications in their physiological effects. During pancreatitis plasma exosomes, but not PAAF exosomes, are enriched in the inflammatory miR-155 and show low levels of miR-21 and miR-122. Mass spectrometry-based proteomic analysis showed that PAAF exosomes contains 10–30 fold higher loading of histones and ribosomal proteins compared to plasma exosomes. Finally, plasma exosomes have higher pro-inflammatory activity on macrophages than PAAF exosomes. These results confirm the generation of two different populations of exosomes during acute pancreatitis. Deep understanding of their specific functions will be necessary to use them as therapeutic targets at different stages of the disease.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Liu ◽  
Lei Xie ◽  
Yao-Hui He ◽  
Zhi-Yong Wu ◽  
Lu-Xin Liu ◽  
...  

AbstractEsophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular subtypes, hindering the development of effective strategies for treatment. To define molecular subtypes of EC, we perform mass spectrometry-based proteomic and phosphoproteomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two molecular subtypes—S1 and S2—based on proteomic analysis, with the S2 subtype characterized by the upregulation of spliceosomal and ribosomal proteins, and being more aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and construct a subtype diagnostic and prognostic model. Potential drugs are predicted for treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken together, our proteomic analysis define molecular subtypes of EC, thus providing a potential therapeutic outlook for improving disease outcomes in patients with EC.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Khadija Daoudi ◽  
Christian Malosse ◽  
Ayoub Lafnoune ◽  
Bouchra Darkaoui ◽  
Salma Chakir ◽  
...  

Amyloid ◽  
2021 ◽  
pp. 1-5
Author(s):  
Magali Colombat ◽  
Béatrice Barres ◽  
Claire Renaud ◽  
David Ribes ◽  
Sarah Pericard ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. 2309
Author(s):  
Sarah R. Weber ◽  
Yuanjun Zhao ◽  
Christopher Gates ◽  
Jingqun Ma ◽  
Felipe da Veiga Leprevost ◽  
...  

Vitreous fluid is becoming an increasingly popular medium for the study of retinal disease. Numerous studies have demonstrated that proteomic analysis of the vitreous from patients with proliferative diabetic retinopathy yields valuable molecular information regarding known and novel proteins and pathways involved in this disease. However, there is no standardized methodology for vitreous proteomic studies. Here, we share a suggested protocol for such studies and outline the various experimental and analytic methods that are currently available. We also review prior mass spectrometry-based proteomic studies of the vitreous from patients with proliferative diabetic retinopathy, discuss common pitfalls of these studies, and propose next steps for moving the field forward.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Han Wang ◽  
Pornpimol Tipthara ◽  
Lei Zhu ◽  
Suk Yean Poon ◽  
Kai Tang ◽  
...  

Chromatin-associated nonhistone proteins (CHRAPs) are readily collected from the DNaseI digested crude chromatin preparation. In this study, we show that the absolute abundance-based label-free quantitative proteomic analysis fail to identify potential CHRAPs from the CHRAP-prep. This is because that the most-highly abundant cytoplasmic proteins such as ribosomal proteins are not effectively depleted in the CHRAP-prep. Ribosomal proteins remain the top-ranked abundant proteins in the CHRAP-prep. On the other hand, we show that relative abundance-based SILAC-mediated quantitative proteomic analysis is capable of discovering the potential CHRAPs in the CHRAP-prep when compared to the whole-cell-extract. Ribosomal proteins are depleted from the top SILAC ratio-ranked proteins. In contrast, nucleus-localized proteins or potential CHRAPs are enriched in the top SILAC-ranked proteins. Consistent with this, gene-ontology analysis indicates that CHRAP-associated functions such as transcription, regulation of chromatin structures, and DNA replication and repair are significantly overrepresented in the top SILAC-ranked proteins. Some of the novel CHRAPs are confirmed using the traditional method. Notably, phenotypic assessment reveals that the top SILAC-ranked proteins exhibit the high likelihood of requirement for growth fitness under DNA damage stress. Taken together, our results indicate that the SILAC-mediated proteomic approach is capable of determining CHRAPs without prior knowledge.


2007 ◽  
Vol 367 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Benlian Wang ◽  
Gang Sun ◽  
David R. Anderson ◽  
Minghong Jia ◽  
Stephen Previs ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 1130-1139 ◽  
Author(s):  
Qian Sun ◽  
Ming Ying ◽  
Quan Ma ◽  
Zhijun Huang ◽  
Liangyu Zou ◽  
...  

Recent studies suggest that copper exposure, even at very low levels, can produce significant toxic effects on the brains of mice.


Sign in / Sign up

Export Citation Format

Share Document