scholarly journals Suppression of abnormal grain growth in K0.5Na0.5NbO3: phase transitions and compatibility

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Patricia Pop-Ghe ◽  
Norbert Stock ◽  
Eckhard Quandt

AbstractThis work presents the suppression of abnormal grain growth in bulk ceramic K0.5Na0.5NbO3 (KNN). The suppression is enabled by precise control of the starting powder morphology through match of milling and calcination duration. A comparative temperature-dependent analysis of the resulting sample morphology, phase transitions and related electronic material properties reveals that abnormal grain growth is indeed a major influence in material property deterioration, as has theoretically been suggested in other works. However, it is shown that this abnormal grain growth originates from the calcined powder and not from sintering and that all subsequent steps mirror the initial powder morphology. In specific, the results are discussed with respect to the predictions of the compatibility theory and microstructure. Despite the material’s multi-scale heterogeneity, the suppression of abnormal grain growth allows for the achievement of significantly improved functional properties and it is reported that this development is correctly predicted by the compatibility theory within the borders of microstructural integrity. It could be demonstrated that functional fatigue is strongly minimised, while thermal and electronic properties are improved when abnormal grain growth is suppressed by powder morphology control.

2018 ◽  
Author(s):  
Risheng Pei ◽  
Sandra Korte-Kerzel ◽  
Talal Al-Samman

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 504
Author(s):  
Huasong Liu ◽  
Yannan Dong ◽  
Hongguang Zheng ◽  
Xiangchun Liu ◽  
Peng Lan ◽  
...  

AlN precipitates are frequently adopted to pin the austenite grain boundaries for the high-temperature carburization of special gear steels. For these steels, the grain coarsening criterion in the carburizing process is required when encountering the composition optimization for the crack-sensitive steels. In this work, the quantitative influence of the Al and N content on the grain size after carburization is studied through pseudocarburizing experiments based on 20Cr steel. According to the grain structure feature and the kinetic theory, the abnormal grain growth is demonstrated as the mode of austenite grain coarsening in carburization. The AlN precipitate, which provides the dominant pinning force, is ripened in this process and the particle size can be estimated by the Lifshitz−Slyosov−Wagner theory. Both the mass fraction and the pinning strength of AlN precipitate show significant influence on the grain growth behavior with the critical values indicating the grain coarsening. These criteria correspond to the conditions of abnormal grain growth when bearing the Zener pinning, which has been analyzed by the multiple phase-field simulation. Accordingly, the models to predict the austenite grain coarsening in carburization were constructed. The prediction is validated by the additional experiments, resulting in accuracies of 92% and 75% for the two models, respectively. Finally, one of the models is applied to optimize the Al and N contents of commercial steel.


2020 ◽  
Vol 128 (18) ◽  
pp. 185109
Author(s):  
Christian Braun ◽  
Raphael A. Zeller ◽  
Hanadi Menzel ◽  
Jörg Schmauch ◽  
Carl E. Krill ◽  
...  

1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


1994 ◽  
Vol 76 (8) ◽  
pp. 4516-4523 ◽  
Author(s):  
E. M. Zielinski ◽  
R. P. Vinci ◽  
J. C. Bravman

1996 ◽  
Vol 204-206 ◽  
pp. 485-490 ◽  
Author(s):  
I.J. Bae ◽  
S. Baik

Sign in / Sign up

Export Citation Format

Share Document