scholarly journals Nanometrology: Absolute Seebeck coefficient of individual silver nanowires

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. Kockert ◽  
D. Kojda ◽  
R. Mitdank ◽  
A. Mogilatenko ◽  
Z. Wang ◽  
...  

AbstractThermoelectric phenomena can be strongly modified in nanomaterials. The determination of the absolute Seebeck coefficient is a major challenge for metrology with respect to micro- and nanostructures due to the fact that the transport properties of the bulk material are no more valid. Here, we demonstrate a method to determine the absolute Seebeck coefficient S of individual metallic nanowires. For highly pure and single crystalline silver nanowires, we show the influence of nanopatterning on S in the temperature range between 16 K and 300 K. At room temperature, a nanowire diameter below 200 nm suppresses S by 50% compared to the bulk material to less than S = 1 μVK−1, which is attributed to the reduced electron mean free path. The temperature dependence of the absolute Seebeck coefficient depends on size effects. Thermodiffusion and phonon drag are reduced with respect to the bulk material and the ratio of electron-phonon to phonon-phonon interaction is significantly increased.

Of the many experimental determinations of the thermal conductivity of Co 2 which have been made, the absolute values given by the various observers vary from 3·07 × 10 -5 cal. sec. -1 cm. -1 deg. -1 (Winkelman, 1), to 3·39 × 10 -5 cal. sec. -1 cm. -1 deg. -1 (Weber, 2), and generally speaking the experiments were modifications of two principal methods, namely, the electrically heated wire of Schleimacher (3) and the cooling thermometer method. In both of these methods convection losses were present to a degree depending on the dimensions and disposition of the apparatus, and on the pressure of the gas; therefore, in the author’s opinion, the discrepancies amongst various observers are due to the practice of attempting to eliminate these convective losses by diminishing the pressure. Such a procedure is justifiable only if the reduction of pressure is not carried beyond the point at which the mean free path of the molecules becomes comparable with the dimensions of the containing vessel. This is a critical point in the determination of the conductivity of a gas, as the authors’ experiments on Co 2 indicate that the convection becomes negligible only at pressures for which the mean Free Path Effect is such that the significance imposed on the conductivity by Fourier’s law loses its meaning, and below this critical pressure the conductivity varies with the pressure in a manner depending on the dimensions of the vessel containing the gas. In the experiments of Gregory and Archer (4), on the thermal conductivities of air and hydrogen, the use of a double system of electrically-heated wires enabled the authors accurately to identify the critical pressure at which convective losses became negligible. This is an extremely important point in all applications of the hot-wire method to the absolute determination of the conductivities of gases, and alone justifies the procedure of lowering the pressure to eliminate convective losses. Above this critical pressure it is necessary to disentangle the conduction and convection losses, and below, the meaning of conduction loses its ordinary significance.


2012 ◽  
Vol 717-720 ◽  
pp. 541-544 ◽  
Author(s):  
Man I. Lei ◽  
Mehran Mehregany

The Seebeck coefficient of heavily-nitrogen-doped n-type polycrystalline 3C-SiC (n-SiC) and platinum (Pt) thin films has been measured from room temperature up to 300 °C by using a microfabricated test structure. At room temperature, the absolute Seebeck coefficient of the n-SiC is -10 μV/°C. With ambient temperature increase, the absolute Seebeck coefficient of the n-SiC is found to gradually increase, reaching -20 μV/°C at 300 °C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1146
Author(s):  
Beate Krause ◽  
Alice Liguoro ◽  
Petra Pötschke

The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.


Sign in / Sign up

Export Citation Format

Share Document